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ABSTRACT

In the total ¢(t) waveform of a ferrite core switched by mmf, F(t),

from negative remanence, ¢ = -¢_, three components are distinguished:
elastic, decaying inelastic, and main inelastic. The model for the
elastic component , ée, is ée = €F, where € is a function of F, ¢, and the

previous switching. The model for the decaying inelastic component, ¢

is @ = N (F-F) % expl-(t = T)(F - F,)/C,], where A, F,,

t

i

v, and Cl
are switching parameters. The model for the main inelastic component, |
&.a’ is é,a = @P{l - [(2¢0 + ¢, - b )/ (P, + ¢,)1%}, where &% is the peak
value of @ and ¢, is the ¢ value on the static @(F) curve, both of which
are given as functions of F. If F is large (compared with the coercive
mmf, F_), then éi + é.a = ép{l - [(2¢ + b, — d )/ (P, + d,)12}, where ¢,
is saturation flux. A computer program is written and applied in com-
puting ¢(t) and its components for a thin toroidal ferrite core. The
results agree well with experimental ¢(t) waveforms obtained by using
F(t) with different rise times (T, 0.1 pusec and T_ £ 0.02 usec) and
different amplitudes (seven to eight values, varying from 2/3 tc more than
twice F ). A small delay (of the order of 0.15 T ) between computed

and experimental ée(t) shows that an improved model for the elastic

¢ is 5%6 + ée = eﬁ, where & 1s a constant proportional to the viscous
damping. The parameters Ki and C, were found to be affected by T : as

T, decreases, Ai increases (slightly) and C, decreases. The flux change
involved in obtaining the static ¢(F) curve for low F values is much
larger than Lféidt; this flux change is ascribed to a very slow switching

component which is either part of éi or é_a with threshold lower than Fg.

Numerical analyses and computer programs are given for three additional
magnetic circuits: a loaded core, a core-diode-transistor binary counter,
and a loaded, saturable, three-leg core. 1In each case, the basic problem
is to solve a set of first-order nonlinear differential equations together
with a transcendental solution for some of the time variables. If the load
is inductive, the loaded-core program provides more exact results that agree

better with experimental data than those obtained previously. The



binary-counter program includes computation vs. time of three currents
and F, ¢, and ¢ of each of two coupled cores during the fast-switching
mode of operation of a single stage in the counter. The computed results
are essentially i1dentical with results computed by a more complex and
more exact method of solution of differential equations (Runge-Kutta and
Adams) and agree quite well with experimental data. The last program in-
cludes three types of computation for flux division: time variables (F,
¢, and ¢ of each leg), flux-division ratio D ws. drive amplitude for
different loads, and D vs. leg-length ratio for different loads and drive
amplitude. The agreement between computed and measured D vs. NI is satis-

factory except for very low values of drive mmf.

The switching properties of a thin-ring core in response to a ramp drive,
F=kt, have been investigated for k varying from0.1 to 10 amp-turn/usec.
Experimental ¢p(k) and tp(k) curves are compared with computed curves
based on the parabolic model ¢ = A(F-—Fg)”[l'—(2¢-f¢'-¢d)2/(¢‘-+ ¢d)2],
The experimental %p(k) curve fell entirely below the computed curve when
step-F parameters were used in the computation. The computed &P(k) curve
could be made to agree with the experimental curve over the entire range
of k by using a lower value of A, A . The computed and experimental tp(k)
curves could be made to agree at any k value by using a lower value of
F, Fy, . However, exact agreement could be obtained at only one k value
because these tp(k) curves cross each other. In spite of this problem,
the above model can be used for practical applications if k does not vary

over a wide range.

A study was made of the effect of temperature (in the range -50°C to
+75°C) on the switching properties of two square-loop ferrite toroids (a
thin ring and a thick ring). Temperature coefficients have been found
for the parameters of the model described above. The static ¢(F) curves
for a partially set state changed with temperature by approximately the
same percentage as the major static ¢(F) curves. As the temperature in-
creased, the ép(F) curves for a step-F drive shifted to lower F values
but their slope and curvature were hardly affected. The ép(k) curves for
a ramp-F drive for different temperatures cross each other. The tp(k)
curves were shifted downward by an increase in temperature, but were
unaffected in slope and curvature. These effects are mostly due to tem-

perature variations in F{_ and A .
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PREFACE

This project report, Contract 950943 under NAS7-100, Stanford
Research Institute Project 5094, is an extension of work under a previous

project, Contract 950095 under NASw-6, SRI Project 3696.

From an engineering viewpoint, the modeling of the terminal proper-
ties of ferrimagnetic or ferromagnetic core materials is useful. There
are different ways to study these terminal properties. One extreme way
is to study each propertyinas many core materials as possible before pro-
ceeding with the next property. Another extreme way is to study all the
properties of one given core material before proceeding to the next core
material. The present investigation lies between the extremes, although
it is closer to the latter. In the past, we have studied the major
characteristics of switching from a hard state (¢ =-¢_ ) and from a cer-
tain type of soft state (|| < ¢r) in a limited number of ferrite core
materials. Among the materials studied, two magnesium-manganese ferrite
materials have been investigated relatively thoroughly. This report
describes the initial elastic and inelastic ¢ spikes of one core material,
the properties of ramp-F switching in three core materials, and the tem-
perature effect on step-F switching, ramp-f switching and static ¢(F)
curves in two core materials. Additional properties of these materials

need to be investigated, but other materials also need investigation.

In Report 3, the switching model was used in computational analyses*
of magnetic circuits (unloaded core, loaded core, and core-diode shift
register). The agreement with experimental data has encouraged us to
extend this application to other magnetic circuits. Consequently, 1in
this report, computational analyses and experimental verification are
given for the initial @(t) spikes of an unloaded core, for a loaded core
(using an improved algorithm), for a core-diode-transistor binary counter,

and for flux division in a loaded saturable three-leg core.

*
By “computational analysis” we mean a numerical analysis which is programmed and run on a digital computer.
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I ELASTIC AND INELASTIC FLUX-SWITCHING COMPONENTS

A. INTRODUCTION

In this section, improved switching models are proposed and verified

experimentally for three components of ¢: the elastic ¢ spike, ¢_, occur-

€?
.

ring while F changes in time; the decaying inelastic ¢ components, &,
which falls exponentially after reaching peak during the rise of F; and
the main inelastic ¢ component, éua’ which 1s bell-shaped and, if F is not
too low, accounts for most of the flux switching. The first and third
components are well known, and were discussed in detail and applied in the

. *
previous three reports!?3

(hereinafter referred to as Reports 1, 2, and 3).
The decaying ¢ component, q'bi, was introduced in Report 3 (using the symbol

éﬁpi instead of c}Si), where an attempt was made to model this component.

An additional experimental verification for the existence of éi 1s
given in Fig. 1 by showing @(t) waveforms of a thin toroidal ferrite core

(Core E-6, Report 3, p. 23). These ¢(t) waveforms resulted from the

0.0l v/turn

TA-T415-1

FIG. 1 q;(t) OSCILLOGRAM OF INTERRUPTED-F SWITCHING
IN A THIN TOROIDAL FERRITE CORE USING F>FY
Core E-6: OD/ID =1.06; F '6= 0.95 amp-turn;
F. =0.9 amp-turn; F = 1.17 amp-tumn.

* References are listed at the end of the report.



interruption of a step-F switching with low F (F = 1.3 F_, where F_ 1s

the coercive mmf). The three fast-switching ¢ spikes (the second of

which is negative) have been retouched because the original traces were
too faint for photographic reproduction. The elastic ¢ spikes shown

occur during the rise and fall of the first F pulse and during the rise of
the second F pulse. The two F pulses have the same amplitude. During

the first F pulse and in the beginning of the second F pulse, the total
$(t) is decaying despite the rise of the main ¢(t) component. The differ-
ence between the total &(t) and the main é(t) component is the decaying
component, él. Our conclusion that éi is due to inelastic domain-wall
motion (cf. Report 3, p. 12) is verified by the following three obser-

vations:

(1) The relaxation time of éi is much longer than typical
relaxation time of rotation of magnetization.4

(2) Referring to the first F pulse, the area under &i
(following the rise time) is much larger than the
area under the negative decaying ¢ component
(following the fall time). The latter 1s elastic 1n
nature, and presumably results from the excess of the
number of walls moving backward over the number of
walls moving forward toward energy minima when F is
suddenly interrupted. This excess in number of walls
is due to the slower average velocity of the walls
passing between energy-valley and energy-peak positions
compared with walls moving between energy-peak and
energy-valley positions.

(3) The éi waveform that follows the positive ¢ spike of
the second F pulse continues to decay smoothly from
its value at the end of the first F pulse. This
behavior is characteristic only of domain-wall motion.

Experimental F(t) and #(t) oscillograms of interrupted-F switching
are shown in Fig. 2 for the same conditions as in Fig. 1, except that
F = 0.8 amp-turn. Since F < Fy (Fg =0.95 amp-turn), the main P(t) com-
ponent is not present, and ¢(t) = ée(t) + éi(t)-

Flux-switching models have been proposed for és, éi, and éma in
Report 3 (the subscript ma is not added in Reports 1, 2, and 3). 1In the
course of further investigation of éi, it was found that certain modifi-
cations should be incorporated into the models for both éi and éma in
order to obtain better agreement with experimental data. These modi fied

models are given next. For completeness, we shall also summarize briefly

the model for ée.



0.2 amp-turn

ﬁ_l
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5 millivolts/turn
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FIG.2 F(1) AND gb(t) OSCILLOGRAMS OF INTERRUPTED~-F SWITCHING
IN A THIN TOROIDAL FERRITE CORE USING F<F6’
Core E-6: OD/ID = 1.06; Fy =0.95 amp-turn; F_= 0.9 amp-turn;
F = 0.8 amp-turn.




B. FLUX-SWITCHING MODELS

Consider a thin core (or leg) which is driven by F(t). Based on the

discussion above, the total ¢ is expressed as

¢ = Pt P D, - (1)

Semiempirical models for is, éi, and ima are reviewed and modified as

follows.
1. ELASTIC ¢ SPIKE

Following Eq. (32) in Report 1 (p. 23),
¢, = €F (2)

where € is a function of F, ¢, and the history of previous switching.
For a core in saturation, €(F) is given by Eq. (34), Report 1, and is
plotted in Figs. 26 and 27 of Report 1 [for convenience, it is replotted
in Fig. 3(a)]. For ¢ = —¢, and if |F| is not much larger than F_, then
for a toroidal core [cf. Eq. (7), Report3, p. 10],

~ ¢5 - ¢F ro
€ = In{— , (3)
2W(ro" ri)Ha (r.)

where ¢_ is saturation flux, ¢, 1s maximum residual flux, H_ is a material

parameter, and r_and r  are outside and inside radii of the toroid.

The effects of ¢ and the previous switching (to reach ¢) on € are
shown schematically in Fig. 3(b). For ‘¢l > ¢,, €(¢) may be derived from
€(F), shown in Fig. 3(a), and the static @(F) curve (not shown). For
¢, < ¢ < ¢, €(p) peaks near ¢ = 0; for a given ¢ value, the faster the
previous switching from —¢_ to ¢ is, the higher is €.° More investigation
in the area of flux switching from a partially-set state is needed before

we can propose a model for e(¢, switching history).
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FIG. 3 EFFECTS OF F, ¢, AND PREVIOUS SWITCHING ON ELASTIC-SWITCHING

COEFFICIENT ¢



2. INevasTIic DECAYING &
a. INTRODUCTION

In Report 3, Eq. (8) (p.11), a semiempirical model was proposed
for éi resulting from a drive of constant amplitude, F,, and rise time, T
According to this model,

] -(t-T ) (F,~FT)/C
b, = p(Fy = Fi)e b e (4)

where p is switching resistance per turn squared, FJ isthreshold, and C

is a constant of proportionality of the decay time constant. Equation (4)
was based [cf. Report 3, pp. 11-12] on the hypothesis that ¢H results from
the motions of those domain walls that do not collide with each other, at
least in the beginning of switching, each terminating when the wall is
obstructed by an inhomogeneity (energy hill of a high slope). The decay-
ing waveform of bi stems from the random distributions of the distance to
the obstructing hill and the average slope of nonobstructing hills. The
higher is the excess of F over a threshold F, the faster the motions of
these walls are. Hence, éi is proportional and the decay time constant is

inversely proportional to (F - F}).

b. LIMITATIONS OF THE PREVIOUS MODEL

The limitations of the model for éi in Report 3 (pp. 11-12) are

as follows:

(1) The model does not account for the rise of é from zero
to its peak value at t = T (while F rises from F, to,
say, 95 percent of Fy). In evaluating the sum ¢ ¢
in Fig. 4 of Report 3, ¢, is neglected during t < T,
whereas<$eis neglected from t = T until F = Fp.

(2) The model is not valid if the rise time, T , 1is rela-
tively long.

(3) The model is applicable only if the drive mmf, F, 1is
of constant amplitude, Fp.

(4) Further 1nvest1gat10n of a given ferrite material has
shown that if F /F" is not much larger than unity, then
¢i is proport1onal not to F, = F{ but rather to
(Fp - F )¥i, where F, < FY and v, > 1. This behavior
1s 51m11ar to that of the main &, "and may be attributed
to the increase in the number of nucleation centers
with the excess mmf.®

re




c. MODIFIED MODEL

Let T, be the time at which F reaches the value F.. The above-
mentioned drawbacks are overcome if the model of Eq. (4) is modified to

the following expression (whichis valid if F > F. and thus for t > T ):

. v ;(!'T»)(F—F.)/C.
b, = AAF=-F) ‘e ¢ P (5)
Here, A, is a constant of proportionality [replacing p;, in Eq. (4), 1in
analogy with the expressions A(F - F;)v and pP(F - F,) for ép in the model
for the main ¢, Report 3, Eq. (2)] and F has an arbitrary waveform with an

arbitrary rise time, T . Fromt =0 to t = Ti, éi = 0. During T,<t<T,
éi(t) increases independently of éﬁ to a peak value, éip, at t = Tip. If
the average slope of the rise of F(t) is low enough, then Tip < T, ; other-
wise, Tip =T,.

d. EXAMPLE

As an example, consider F(t) with a ramp rise followed by a

constant amplitude, i.e.,

v Fpt/T, if 0 <t < Tr
F = . (6)

F, 1if T <t
Switching starts at
F,
T, = Tr-;z (7)

During T, < t < T_, Egs. (5), (6), and (7) give

r

’ o 2
. . (=T Y F /(C.T )
b, = ALt =THF T ) e T TR (8a)

during T < t, Eqs. (5) and (6) give

~(t~Ti)(FD—Fi)/Ci

b, = N(Fy-F) ‘e (8b)




Whereas éi(t) of Eq. [8(b)] falls exponentially with time, %l(t) of
Eq. [8(a)] rises with time to a peak value éip at t = Tip. Differentiating
Eq. [8(a)] with respect to time and equating d&i/dt to zero, we get

T,, = FAT/Fy) +J(Cv./2) - (T /F) (9)
which is valid provided that Tip < T,. For a given value of Fp, T <T
if Tr exceeds a certain value, T

find that

r

;g By equating Tip, Eq. (9), to T , we

C.v.

T,, = — : (10)
2F,[1 - (F,/F)]?

On the other hand, 1f T > T ., then the expression given by Eq. (9) is
larger than T . Since for t > T, &i(t) in Eq. [(8(b)] decays exponen-
tially, éi(t) reaches a discontinuous peak at t = T , and so Tip =T

We may thus conclude that, for a given Fp value, 1£ T >T g,
Eq. (10), then r,, 2T, and Eq. (9) is valid; but if T < T ,, then
Tip = T,. The two cases, designated by Subscripts (1) and (2), are shown
in Fig. 4. 1In both cases é(t) is discontinuous at t = T_, but in Case (2)
the discontinuity and the peak of éi(t) coincide. In each case, the peak
value of éi, éip, may be determined by substituting t = Tip into Eq. [8(a)].
Thus,

,

V. /2
CiViFD t
AL if T
"\ 2eT, "

b, =9 (11)

v
~3

B [Case (1)]

L p o2

. =T (F,=F_ )°/{(F,C.)
N(Fy = F) te 7 0701 PTG T, < T, [Case (2)]
\

A
~3

We conclude from Eqs. (7) through (11) that, for a given value
of F,, the larger T is, the larger are T, and Tip and the smaller is éip.
In the limit of Case (1), as T, — @, éi = 0. In the limit of Case (2),
as T _~—0, ¢ip - Ki(FD = Fi)vi; hence, @i rises instantaneously to éip at
t = 0 and decays exponentially thereafter in accordance with Eq. (8(b)]
in which T, = 0.
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FIG. 4 EFFECT OF T, ON ¢(r) WAVEFORM FOR A GIVEN F

A similar analysis may be carried out for a given value of T,

and a variable FD._ From Eq. (9) we find the value

. Civi Civi Civi
FDB = F. + + 2F; + (12)
' 4T, AT, AT,

such that 1f FD > FDB’ then Tip < T, but 1f FD < F

bB’

r

then T. =T_.
ip

e. EFFECTS OF GEOMETRY ON SWITCHING PARAMETERS

In analogy with the material inelastic-switching properties

of the main ¢ of a thin core (or leg) of cross-sectional area A and

average length, ! (cf. Report 2, pp. 8, 37-40), Eq. (5) may be converted



from &i(F,t) into Bi(H,t), where B, = éi/A and H = F/1. Thus, in analogy
with the relation Bp = k(H - HI(;)V of Eq. (83) in Report 2,

v, ~(t=T. )(H~H )/M.
KI(H_HL) le 13 l i

oo .
1]

) (13)

where « ., H_, and M, are material parameters (H reaches the threshold

value H at t = T, ). Following the geometrical relations expressed by

Eqs. (91) and (92) of Report 2 (p. 40),

i

N, K A/ (14)

and

1 13

F. = H.l . (15)

Assuming that the decay time constant is determined solely by the material-

switching behavior,

c. = M1 . (16)

1 12

Equations (14) through (16) are useful in calculation of éi of legs (or
cores) of the same material, but of different geometry, e.g., in calcula-

tion of flux division in a saturable three-leg core, as we shall see later.

f- VARIATION OF F,

We have presumed that éi is generated by the motion of noncol-
liding walls which are finally obstructed by randomly distributed centers
of imperfections (energy hills of high slopes). In line with our hypo-
thesis that the average slope of the nonobstructing hills is randomly
distributed, the slope of the first hill is also randomly distributed.

As a result, we may expect the threshold F, to increase from near zero to
some finite asympotic value, Fg .. Physically, this means that a small
percentage of the walls are initially at a barely stable state (i.e., a
very small applied F will displace them inelastically) and that most of
the walls will break free 1f F > F ..

A plot of F, vs. F is shown in Fig. 5. As an approximation,

F. vs. F may be described by a tanh function, 1i.e

i °

F, = F,, tanh (F/F,,) . (17)

10
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FIG. 5 APPROXIMATE VARIATION OF F. WITH F

Note that the slope of F,(F) at F = 0 is unity, as expected from the dis-
, and 3F0i, F . reaches

respectively. With

cussion above. Thus, for F values of F,.. 2F,,

76.16 percent, 96.4 percent and 99.5 percent of Fo.

F_ defined as in Eq. (17), T, = 0 because F = F_ at t = 0.

The relation between the value of FOi and the values of other

threshold parameters will be discussed later (p. 36).
3. INELASTIC MAIN ¢

a. INTRODUCTION

A model for the main ¢ was proposed and applied in Report 3.
Following Eqs. (1), (2) and (4) of Report 3,

bra = b1 (18)
where
0 . if F<F!
b, = {MF-Fp¥ if Fj <F <F, (19)
p,(F=Fy) if Fy <F
and

20 + ¢, - P,\°
m = 1~ 5 3 (20)
s d

11



and where ¢, is the ¢ value on the static ¢(F) curve. Based on experi-
mental verification in Report 3, we concluded [cf. Report 3, p. 33] that
the above model is satisfactory, except if F is low, i.e., around the

coercive mmf or lower.

b. MODIFIED 7M()

Typical $(¢) oscillogram of step-F switching in a thin ferrite
core (Core E-6, Report 3, p. 23) are shown 1in Fig. 6 for three amplitude
values: F, = 1.2, 1.4, and 1.8 amp-turns. In the beginning of switching,
as ¢ rises by a small /p above —¢, $(¢) is due primarily to és and éi.
Beyond this region of ¢, $(p) is due primarily to ii and éma. As ¢ 1in-
creases, the contribution of éi to the total ¢ diminishes to a negligible
amount, and ¢(¢p) is essentially éma(¢). An extrapolation of ¢m0(¢) to the
¢ axis is dash-lined in each case of Fig. 6. Each ¢ME(¢) extrapolation
intersects the ¢ axis at ¢ = -4, rather than ¢ = ~¢p,. As a result of this
observation. we shall modify m(¢) of Eq. {(20) by replacing ¢ by ¢, , t.e.,

20 + ¢ = d,\?
77=1——;;—+-¢—— . (21)
r d

Note that ¢ is the total flux, i.e., obtained by integration of the three

components of ¢, Eq. (1).

4. DiscussioN

The experimental data given in Fig. 6 were known before the previous
7($) function, Eq. (20), was proposed. One may then ask why we chose 7{¢)
given by Eq. (20) instead of 7m(¢) given by Eq. (21). The answer lies 1in
the.solution to the differential equation of éma in the absence of the de-
caying component, ii. In order to simplify the explanation of this point,
let us assume an ideal step-F switching (F rises to FD in a zero rise time),
for which ép, Eq. (19), is constant. We shall first neglect the elastic
¢ component, ée. If ¢ is identified with the main component, ¢ma (i.e.,
the flux due to time integration of &ma only), then the resultiug solution
of the differential equation expressed by Eq. (18) in which 7n(¢) is given
by Eq. (21) is absurd: The initial value of ¢ is zero and the switching
time required to change ¢ from —¢ to zero is infinite [cf. Report 1,

Eq. (40) and Fig. 30, pp. 97-98). 1In order to overcome this difficulty,




FIG. 6

() Fp=1.2amp-turn

(b) Fp=1.4 amp-turn

(c) Fp=1.8Bamp-turn

TA-5094-5

é($) OSCILLOGRAMS OF STEP-F SWITCHING OF A THIN FERRITE RING
Drive: 0.05 pusec rise time; variable amplitude Fp-

Core: E-6; OD/ID = 1.06; F. = 0.9 amp-turn.

Added dashed lines are extrapolated ¢ _ vs. ¢.

¢ Scale = 1.04 maxwell/major div.; ¢ scale: (a) 3.3 mv/turn,

(b) 6.9 mv/tum, (c) 13.8 mv/turn.
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we approximated m(¢p) by the expression given in Eq. (20). However, this
difficulty in obtaining the proper rate of increase of ¢ from -¢_ does not-
exist with our present model because of the presence of the additional,
decaying, ¢ component, whose initial value is finite, i.e., A (F) ~ Fi)vi.
Under this condition, we are allowed to use the more exact 7(¢) function
given by Eq. (21).

In the discussion above we have neglected the elastic component, ée.
If we include és, then, in the absence of éi, b = éna + ée, and as F rises
from zero to F,, ¢ increases by the amount €F,. Although the use of 7(¢)
of Eq. (21) will not lead to an infinite switching time, the initial value
of éma at ¢ = —¢p_+ €fpis extremely low, and the resulting computed ¢ wave-
form will have little resemblance to the observed ¢ waveform. Therefore,
even 1f ée is included but éi is not included in the total ¢, we have to

use the 7m(¢) function given in Eq. (20) and not the one given in Eq. (21).

If F, is larger than the F value at the upper knee of the static @(F)
curve, then the sum éi + éma, in which éma is calculated by using 7m(¢®) of
Eq. (21), is approximated quite well by &mu calculated by using 7(¢) of
Eq. (20), as is illustrated in Fig. 7. The resemblance between the two
#(t) waveforms in Figs. 7(a) and 7(b) justifies the practice of using the

approximation

dAL- L2+, ~d,)/ (B, +d)1%) = &, v {1 [(20+¢, —0,)/ (@, )1}

(22)

. . 2¢+¢"¢2 2 +¢ - 2
=d - —r 4 b=d (&t s ™d
(°)¢"4’-, +¢p | ( ¢r+¢d ) © ¢-¢9L ( ¢s+¢d )

FIG. 7 RESEMBLANCE BETWEEN $(ﬂ WAVEFORMS DERIVED FROM TWO MODELS
FOR INELASTIC o

TC-5094-6
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if the drive mmf is large enough to switch ¢ to the saturation region

above the knee. However, if F is low (e.g., F = F_), then such an approxi-

mation may become quite poor. Furthermore, if F, <F«< Fg, then éi >0,

whereas énu = 0 regardless of which 7(¢) function is used because, following

Eq. (19), ¢ = 0.

P

In general, if the instantaneous ¢ is of interest, the elastic com-
ponent of &, &E, should be included. However, if inelasticA¢ is to be
calculated, then it is justified to neglect ée'

5. SumMary

Three components are distinguished in the total #(t) waveform of a
ferrite core: elastic ¢ spike, ée; inelastic decaying ¢, éi; and the
bell-shaped main inelastic ¢, ina' The following semiempirical switching
models.are proposed for the three components of ¢: For the elastic &,

@, = €F, where € is a function of F, ¢, and the previous switching; for

¢ = ~¢, and F not much larger than F_,

e = {(¢, - ¢,)/[2W(ro - r,)H .1} In(r /r.)
. o "( -T‘)(F—-F.) C.
For the decaying inelastic ¢, b, = A (F = Fi)v‘e ol i/ ', where
A, is a proportionality factor, F. is the threshold, Vv, is a power coef-
ficient, T, is the time of beginning of ¢i switching (when F reaches Fi),

and C, is a constant proportional to the decay time constant. For the
main inelastic ¢, ¢, , = &,{1 - [(2¢ + &, - ¢,)/(b, + $,)12}, where, for
given F, &} is the peak value of &, ¢, is the ¢ value on the static &(F)
curve and ¢r is the maximum residual flux. If F is low (around FC or
lower), éi should be distinguished from é.a, but if Fis large, then

éi + é-a may be approximated quite well by

¢ = ¢, {1 - [(28 + ¢, - @)/ (s, + 1%}
in which ¢; 1s saturation flux.

C. COMPUTER PROGRAMS FOR ¢ COMPONENTS

In Report 3, a computer program for only the main component of ¢pwas
provided. It was felt then (cf. Report 3, p. 34) that more needed to be

known about és and éi before these components were incorporated into the

15




over-all computer program. After studying &i in more detail, its incor-
poration has been undertaken. (It should be emphasized that our present
information is based on the study of one core only; more core materials

will be investigated in the future.)

If a core is switched unloaded, then F(t) and ﬁ(t) are given. How-
ever, if a loaded core is switched, then the time variables, including
F and ﬁ, are solved for transcendentally. If Newton’s method (cf.
Report 3, p. 42) is used in this solution, then the value of ¢' = dg/dF
needs to be known. Following Eq. (1),

b= Pl ot Pt Bl (23)

where &; = dée/dF, i: = déi/dF, and é;a = d&ma/dF. Each of these ¢' com-
ponents will be computed 1in the corresponding ¢ PROCEDURE where the ¢

component itself is being computed.

!

1. COMPUTATION OF ¢_ AND ¢,

Computation of ée is based on Eq. (2), i.e., ée = eﬁ. A computer
program for c?mputing &E and é; is given in Appendix A in a form of
PROCEDURE %e(F, At, NV, é;). The elastic switching parameter, €, 1is
global, i.e., declared throughout the program; it may be evaluated by
using Eq. (3). The input parameters are ﬁ, At, and NV, the -latter
standing for a negligible value of ée; é; on the other hand, 1is an output

parameter.

In the case of a loaded core, F at t = t, = nQt is approximated by

differences rather than differentials, i.e

L

. Fn - Fn'-l
F = 2
~p (24)
Since only F_ 1is solved for (the values of F__;, and At are given),
¢. = d(eF)/dF . Hence,
. = /bt . (25)

For practical consideration, if éE < NV, we shall assume that ée = 0 and,
therefore, also éé = 0.
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2. COMPUTATION OF ¢, AND !

Based on Eq. (5), éi 1s computed as a function of F, t, and T,. A
computer program for computing %i and &: = d&i/dF 1s given 1in Appendix B
in the form of PROCEDURE éi(F, t, T, &:). The core parameters A, F
v, and C, are assumed to be global parameters. The excess mmf, F - F.,
é:) PROCEDURE is called, and as soon
as F - F, >0, T, is identified with the corresponding t value. Using
Eq. (5),

i?

is computed each time &i(F, t, T.

1?

¢ - . —(t=T ) (F=F_)/C ) (26)
v. —=(t— . -F . B
N (F-F) e GHTRS e s T

Differentiation of Eq. (26) with respect to F gives

0 if ¢ <T,

¢! = . (27)
. 1 t_T

. - 1f ¢ > T.
> \F-r, T e

t

For practical consideration, if éi is negligible, e.g.,
éi < 0.001 A (F - F,), then we assume that éi = 0 and é; =0

3. COMPUTATION OF ¢__ AND &/

Computation of the main component of &, éua 1s based on Egs. (18),
(19), and (21). The computer program for computing é-a and é;a = d@la/dF
is given in Appendix C in the form of PROCEDURE éla(F, ¢ Py &;a), in
which F and ¢ are input parameters and ¢, and é;a are output parameters.
This PROCEDURE is identical with @(F, ¢, Das ¢') PROCEDURE given in
Report 3 (Appendix A, pp. 133-135) except for two modifications: First,
M(¢) follows Eq. (21) instead of Eq. (20) and second, Flz' F23, Vl, and
V, [cf. Report 3, Eqs. (26) through (29), pp. 18-19] are t?eated as global
core parameters instead of being computed once inside the ¢ PROCEDURE.
Following the first modification, ¢, replaces ¢ in evaluation of é:a [cf.
Report 3, Eq. (41), p. 20]. For practical consideration, if
by ¢ < 0.001¢,, then we assume that é_a = 0 and therefore, also é;a =0.
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We have shown [cf. Eq. (22)] that if F is not low, (éi + éma) may be
replaced by ima alone if we replace 7m(¢) of Eq. (21) by m(¢) of Eq. (20).
Under this condition, PHIS should replace PHIR in Lines PHDTMA42 through
PHDTMA45 of the éﬁa(F, b, Ey &;0)‘ PROCEDURE, Appendix C. In Appendix D,
two computer PROCEDUREs of different output parameters are given for this
case: (F, &, ¢, ¢') and $(F, ¢, &', *). The first PROCEDURE is the
same as the one used in Appendix A of Report 3 (p. 133), and its output
furnishes the values of &, ¢y, and ¢'. The output of the second PROCEDURE
includes &, &' and ¢*, where, as shown on p. 43 of Report 3,

2¢+¢$_¢d
(¢, + @)°

(28)

p

. .
¢* = % 4¢

Another difference, which is minor, is that the core parameters F ,, F,.,
V. and V, are arbitrarily treated as global parameters 1n the

&(F, ¢ &', ¢*) PROCEDURE, but not in the ¢(F, ¢, ¢,, ¢') PROCEDURE.

4. SUMMARY

Computer programs for the three components of ¢ and @' = do',dF are
given in PROCEDURE forms in Appendices A, B, and C. PROCEDURE ée(k, At
NV, ¢') is based on Eqs. (2) and (25); PROCEDURE ¢ (F, t, T ,, &) is based
on Egs. (26) and (27); and PROCEDURE ¢__(F, ¢, ¢, ¢..) is based on
Eqs. (18), (19), and (21). Two computer PROCEDUREs that differ in their
output parameters, H(F, &, Dy $') and P(F, ¢, ¢', ¢*), are given in
Appendix D for the case in which the sum ¢i + &ma is approximated by

$=3¢0 - 02+ ¢, —o)/ (¢, + ¢, Lgs. (18) through (20).

D. EXPERIMENTAL VERIFICATION

The experimental study of the ¢ components consisted of clearing and
setting a thin ferrite core (Core E-6, Report 3, p. 23), and photographing
the waveforms of ¢(t) and F(¢) during the beginning of the SET pulse.
Variations in the SET pulse included two rise-time values, each with seven
or eight difterent amplitude values. A computer program was written and,
with the proper core and circuit parameters, used to compute the P(t)
waveforms. Experimental and computed results were then compared and

analyzed.
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1. EXPERIMENT
a. INTRODUCTION

In order to investigate the decaying component, (?)l, meaningfully,

the main component, ¢, should be as small as possible, certainly not

a
much larger than éi. This condition can be achieved if the rise time of
F(t) is short. On the other hand, a short rise time generates a high-
frequency ringing in the core windings (due to stray capacitance), causing
a distortion in ¢(t). Another difficulty in this type of investigation

stems from the variations of ¢, if the rising portion of F

~

b. RISE TIME

Two values of rise time were used: one was around 0.1 Musec, and
the other around 0.02 psec. No difficulties were encountered using the
longer rise time. However, some ringing was present in the case of
T = 0.02 usec. A typical example is shown in Fig. 8, where the waveform
o; the observed dD(t) has been traced. It can be seen that subtraction of
a decaying ¢(t) ringing of a high frequency (about 100 megacycles) from the
observed ¢(t) oscillogram results in a smoother #(t) waveform. The latter

should be considered to be the actual fb(t) waveform.

] | ! 1 | | |
’—‘(_\
Ve .
N SMOOTHED (1)
tr ™ 7
\
I \
é
| _ A _
OBSERVED ¢ (1) \

I $(1) RINGING

10 mv/t /(
i 1 | L~ 1l ]
‘\\_—/,

—>{ 5 nsec

TA-5094-7

FIG. 8 RINGING IN qg(f) FOR F(t1) WITH A SHORT RISE TIME
Fp = 1.50 amp-turn; T = 19 nanoseconds.
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A mercury-relay pulser, with its capability of providing current
pulses up to 40-ampere amplitude with less than 0.7-nanosecond rise time,
is very attractive for studying high-F $€ and éi. Unfortunately, an attempt
to use the mercury relay has beén unsuccessful so far because of an exces-

sive ringing in the ¢(t) waveforms. This problem should be pursued further

in the future.

c. TESTED CORE

Oscillograms of @¢(t) were recorded only for one core, the thin
ferrite toroid (OD/ID = 1.06) which is referred to as Core E-6 in Report 3.
The dimensions and switching parameters of this core may be found in
Report 3, p. 23. The nominal composition of the core material (commer-
cially known as Telemeter Magnetics T-5) is

++ +++
[Mgo.szz“o.loM“o.ss] [Mno.zeF 0

€0.74"2 4

The ¢(t) waveforms of additional cores of different material and
larger OD/ID ratio were observed and appeared to behave in a manner similar

to that of the ¢(t) of Core E-6.

d. CORE HOLDER

The same coaxial core holder was used as described on p. 85 of
Report 3. The sense winding was increased to 20 turns of No. 48 copper
wire. The negative clear winding consisted of 10 turns distributed around
the circumference of the core. The drive winding was modified so as to have
a single turn made of six No. 48 copper wires. The pulses with 0.1-usec
rise time were applied to this single-turn 6-conductor winding. In this
case the center conductor of the 50-ohm transmission line was not used.

The pulses with 0.02-usec rise time were applied via the center conductor

of the 50-ohm line.

e. PULSE SEQUENCE

The pulse sequence was that discussed in Report 3, p. 83: first,
a positive CLEAR pulse; second, a negative CLEAR pulse; and third, the

(positive) SET pulse during which measurements were made.

20



f- EQUIPMENT
Four different current pulsers were used in this experiment:

(1) The SET pulses with 0.1-usec rise time* were
generated by paralleling several high-impedance
transistor current drivers (Digital Equipment Corp.,
Model 62). Maximum amplitude was 5.0 amperes.

(2) The SET pulses with 0.02-usec rise time* were
generated by a tube current driver (Hewlett-Packard,
Model 214A). Maximum amplitude was 2.0 amperes.

(3) The negative CLEAR pulse was generated by paral-
leling five tube drivers (Digital Equipment Corp.,
Model 50; 0.1-usec rise time). Maximum amplitude
was around 7 amperes.

(4) The positive CLEAR pulse (1.4 ampere x 10 turns)
was generated by a single tube driver (Digital
Equipment Corp., Model 51; 0.1-usec rise time)
for the cases of T, ¥ 0.1 usec and by two trans-
1stor drivers (Digital Equipment Corp., Model 63;
0.05-usec rise time) in parallel for the cases of
T = 0.02 psec.

Two oscilloscopes were used. The waveforms corresponding to
0.02-pusec rise time were recorded on a Hewlett-Packard 185A sampling
oscilloscope, having a response time of about 0.5 nsec. The waveforms
corresponding to 0.l-usec rise time were recorded on a Tektronix 545
oscilloscope with a Type K plug-in unit, resulting in a combined response
time of 13 nsec. The response of the Tektronix oscilloscope together with
the plug-in unit was checked with a Tektronix Model 108 mercury pulser in
order to make sure that no overshoot was obtained and that the response

time was short enough.

The delay experienced by the F(t) pulse with 0.02-usec rise time
(between the time when ¢ was measured and the time when F was measured)
was 3.5 nsec. This time delay was corrected by shifting the oscilloscope
trace of F(t) with relation to the ¢(t) trace and by photographing the two

traces separately.

The temperature of the core was automatically maintained at 30°C
by means of a thermistor probe and an electrical heater imbedded in the

outer conductor of the coaxial core holder.

* The rise time T  is twice the time that it takes the current pulse to reach half of its amplitude as de-

fined later in Fig. 9.
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9. COMPUTATION

a. METHOD OF COMPUTATION

Computation of $ of an unloaded core may be performed by the
same simple predictor-corrector method used in Report 3 [Egqs. (42), (43},
and (44), p. 25), except that ¢ now includes three components [&2, Eq. (2);
&i, Eq. (5); and @ma, Eqs. (18), (19). and (21)] instead of one [ima,
Eqs. (18), (19), and (20)]. Following this method. ¢, at t =t = nt
(At is a short time interval compared with the switching ctime, 7_) 1is
first predicted from the relation

b = P, t 201 . (29)

n n

This is followed by an iterative computation of 7, and & . Since F and F

are both a function of time, in may be formally expressed as

o= e F (e T (td) (20)

The expression for the corrected @ 1=

b = o, TOBNtIG t D, ) : (317

Equations (30) and (31) are used repeatedly until proper convergence of
&n and ¢ 1s achieved.

DRIVF CURRFN1 s . TIML

As shown in Fig. O, the waveiorm ol tne drive current, whichis

applied to the unloaded core. is approximated by the following functions:

I 2
?5 %; {;— (utm - 2) - (utm - 3j‘ 1if 0 <t <t (32a)

v T
IE
- [1 + tanh u(r - tm)} vt <t , (32b)
where [, is the amplitude, t_1is the “half rise time' (1.e., 1, reaches
I,/2 av t = t ). and u is a waveform parameter ttypically, ut) varies

[ £%]
3




ID—————_————-———___

[I + tanh u(t-t,,,)]

1
% ———————— U-'-Zsp/lo

2 12 ['Lm (utm-Z)—(utm-S)]

4
-1
jﬁtun Sp |

0 tm Te= 2ty t —
TA-5094-8

FIG. 9 APPROXIMATE DRIVE~CURRENT FUNCTION

from 1.35 to above 2). The functions given in Eqs. (32) satisfy the
following requirements: i, = 0 and di,/dt = 0 at t = 0; the values of
i and diD/dt determined from Eq. (32a) are equal to the corresponding
values determined from Eq. (32b) at t = t, (i.e., no discontinuity at

t =t); and iy, = I, and di,/dt = 0 as t = ®©. It can be seen by inspec-
tion of iD(t), Egs, (32), and its time derivative,

[ I,t
— |— 3(ut, - 2) - 2(ut, - 3) if 0<t<t, (33a)
. 2t; [ ]
L]
dt
ID
i sech? [u(t = t_)] ift, <t (33b)

\

that these requirements are satisfied. (At t = ty, tp = I,/2 and
di,/dt = ul;/2.)
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The maximum slope of iD(t), denoted by Sp, is reached at t =t

By measuring SP, the value of u is readily determined from the relation.

w o= 28 /I, . (34)

As shown in Fig. 9, the rise time is defined as twice the “half

rise time,” t.e., T = 2¢,.

c. OUTLINE FOR COMPUTER PROGRAM

A computer program for computing és, éi, éma and the total ¢
vs. time of an unloaded core is given in Appendix E. The outline of this

program is as follows.

(1) Declare global identifiers of core parameters,
circult parameters, variables, miscellaneous,
input-output lists and formats, and PROCEDUREs.

(2) Read in, compute, and print core and circult
parameters.

(3) Set the values of the switching parameters and
the initial values of the variables.

(4) For every nthAt during prescribed switching

time T :

(a) Compute t =t _; *t At, i, from Eq: (32),
F_=Npip,, F, from Eq. (17), and F_
using Eq. (33).

(b) Predict ¢, from Eq. (29), and compute the
following variables in an iterative fashion
(no more than six times) until the change in
¢ is negligible: ¢,,, [call ¢, PROCEDURE]
¢, [lcall ¢, PROCEDURE], ¢, [call ¢, PROCEDURE],
¢ [Eq. (30)], and ¢, [Eq. (3D)].

(c) Reset index of variables before proceeding to
the next At.

(5) Print output (¢, i,, P, $. By o ¢, ¢, b, F, and
number of iterations) .every, say, second At during
the rise of i, and every tenth At thereafter.
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d. CORE AND CIRCUIT PARAMETERS

The core parameters fed into the computer program in Appendix E

are those of Core E-6.

The parameters for computing é_a [Eqs. (18), (19), and (21)] at
T = 29°C are as follows:

L, = 22.19 mm; lo = 23.54 mm;
¢, = 3.45 maxwells; ¢, = 3.726 maxwells;
H, = 310 amp-turns/m; Hq = 35.0 amp-turns/m;
H = 30.0 amp-turns/m; ng = 0.95 amp-turnp;
Fo = 1.45 amp-turns; FB = 3.12 amp-turns;

v = 1.3; A = 0.069 ohm/turn2'3amp°'3;
o = 0.113 ohm/turn?.

The values of these parameters are as given in Report 3, p. 23, except
for a correction in the value of H_  and very minor corrections in the
values of ¢_, v, Py and FB' The corrections have been introduced as a

result of more careful measurements of core parameters.

For computation of éE[Eq. (2)], substitution of the values of
Lyv 1y, &, &,, and H, into Eq. (3) gives € = 0.3895 muhy/turn?.

Among the core parameters for computing éi [Eq. (5)], it was
found that Fo. = 0.55 amp-turn and v, = 1.3. The values of Ki and,
especially, C,, were found to be dependent on the rise time of F(t). For
T, in the neighborhood of 0.1 usec, A, = 0.012 ohm/turn?-3amp®-3 and

C, = 0.245 amp-turn-usec; forT, around0.0Z;xsec,%w =0.014gohm/turn2'3amp°'

and C, = 0.145 amp-turn-usec. The parameters Fy., v,, X, and C, were
determined by a cut-and-try method, in which the difference between ex-
perimental @(t) and computed (¢€ + &_a) was in reasonable agreement with
the assumed éi model, Eq. (5), regardless of the mmf-amplitude value, FD’
Specifically, eight values of F,, varying from 0.6 amp-turn to

2.4 amp-turns, were examined.

The circuit parameters in the computer program merely describe
the waveform of the drive mmf, F(t). These are fed into the program via
input-data cards, and include values for ID (since a single-turn drive
winding was used, F, = NyI, =1)), t,, and SP [cf. Part D-2(b)].

25



3. ReEsuLTs

Experimental and computed F(t) and ¢(t) waveforms during the begin-
ning of switching are compared in Fig. 10 for the drive mmfs with T near
0.1 usec. Eight values of ampliﬁude F, were applied: 0.6, 0.8, 0.9, 1.0,
1.2, 1.5, 2.0, and 2.4 amp-turns. For each F, value, two sets of experi-
mental and computed F(t) and ¢(t) waveforms are compared, using different
time scales: Set i (on the left side of Fig. 10) emphasizes ¢(t) during
the rise time of F(t) (using a time scale of 40 nsec/div); Set ii (on the

right) emphasizes #(t) immediately following the rise of F(t).

The solid lines in Fig. 10 are experimental oscillograms and the dashed
lines are computed curves. These waveforms were produced without any manuaal
drafting in the following manner: Negative enlargements of the original
white on black experimental oscillograms were made on (transparent) acetate
sheets, and the resulting scales of time, F, and ¢ were inserted into the
computer program (Appendix L). The program was run on a Burroughs B-5500
digital computer, and the results, first written on & magnetlc tape, were
plotted automatically as dashed lines by a CalComp Model 570 plotter.

These computed plots and the enlarged negatives n€ the experimental oscil-

lograms were then superimposed and photographed.

A comparison between experimental and computed F(t) and ¢(t) waveforms
for the drive mmfs with T T 0.02 psec is shown in Fig. 11. Seven values
of F, were used: 0.6, 0.8, 0.9, 1.0, 1.18, 1.5, and 2.0 amp-turns. As 1in
Fig. 10, for each F value, the emphasis 1s on ¢(t) during the rise of F(t)
in Set i, whereas Set ii shows the detail of ¢(t) following the rise of
F(t). As explained previously (cf. Fig. 8) the waveforms of @(t) are dis-
torted slightly by ringing, especially during the rise of F(t), shown in
Set i. The photographic technique for producing Fig. 11 was the same as
that used for Fig. 10.

4. DiscuUsSION

a. VALIDITY OF THE MODELS DURING THE BEGINNING OF SWITCHING

The results in Figs. 10 and 11 show that, in general, there is
a satisfactory agreement between experimental $(t) waveforms and the
switching models for the three components of ¢ proposed in this report.
There are, however, scme disagreements that need explanation and further
investigation. Only a small portion of these disagreements stems from the

differences between the actual F(t) waveforms and the cnes assumed in Egs. (32).
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FIG. 11 EXPERIMENTAL (SOLID LINE) AND COMPUTED (DASHED LINE)
F(t) AND ¢(t) WAVEFORMS OF UNLOADED CORE E-6 DURING
BEGINNING OF SWITCHING, USING F(t) WITH T OF ABOUT 0.02 pusec
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The model for the elastic component of ¢, &e = 6%, turns out to
.be too simple. It is based on the assumption that the elastic motion of
domain walls and elastic rotation of magnetization encounter only pull-
back (or stiffness) forces that are proportional to the relatively small
displacement and small angle of rotation of magnetization. There is,
however, a short delay between €F and the actual ée. This delay is prob-
ably caused by viscous damping that is proportional to &E. Inclusion of

the viscous damping will result in a differential equation of the form

5b, + ., = eF (35)
where & 1s a constant proportional to the viscous damping.

The model for éi, Eq. (5), appears to agree quite well with ex-
perimental &(t) during the beginning of switching. It should be emphasized
that only one core (Core E-6) has so far been investigated thoroughly.

The ¢(t) waveforms of other tested cores were similar to those of Core E-6;
however, these waveforms have not yet been analyzed quantitatively. Clearly,
such an investigation, although costly, should be performed with other

materials in order to substantiate the proposed &i model.

b. VARIATIONS IN SWITCHING PARAMETERS

We have seen that in order to obtain a satisfactory agreement
between observed ¢(t) waveforms and the model for éi, the switching
,» of F(t). A
slightly larger Ki and a smaller C, correspond to a shorter T,.. This

parameters A  and C, had to depend on the rise time, T

dependence of A, and C, on T is very complex, and may, perhaps, be ex-
plained qualitatively as follows. If T, 1s short, domains in some regions
would expand only locally when F(t) = FD, and thus contribute a &i com-
ponent of a short duration. If T is long, such local domain expansions
are given no chance to occur: before F reaches the local threshold values,
flux reversal in these regions is caused by the applied F plus the magnetic
poles brought about by oncoming unobstructed domain walls. The shorter T,
is, the larger is the number of nucleation centers around which short-
lived, local, domain-wall motions take place, and thus the larger is the
mean displacement time of these walls. This argument may explain why A,

increases and Ci decreases as Tr decreases. .
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It is interesting to note that v, = v. Whether this is a coin-
cidence or not remains to be determined after additional core materials
are investigated. Some light may be shed on this problem by attempting
to explain the physical origin of v. Conger and Essig hypothesized6 that
the threshold field for domain-wall motion in thin films is distributed
randomly over the range between the coercive force and the anisotropy
field. As a result, the number of walls, in addition to the wall velocity,
increases with H, and the nonlinear%ty of 1/7, vs. H is accounted for.

In a similar way, by assuming that Bp = k(H = Hy)" [Report 2, p. 38,

Eq. (83)], an effective H, denoted by H,, that increases with H between
HS and HB [Report 2, p. 38, Fig. 15] was obtained. The motion of locally
obstructed domain walls is governed by the same rule. If the value of v
is determined by the distribution function of the threshold field, and if
the same distribution function 1s applicable to F,, one would expect v,

and v to be equal.

We have seen that there is an analogy between the parameters A,
Fg, and v of ima and the parameters A, F_, and v, of éi. Let us carry
this analogy a little further. Referring to Eq. (19), ép = pp(F - Fy,
where FO > Fg, if FB < F. Hence, we expect that for high F values, com-
pared with those in Figs. 10 and 11, éi will become proportional to
(F = F7), where Fr > F,,. This is in agreement with Eq. (4) and with the
fact that the ratio FO/FS = 1.45/0.95 = 1. 52 is close to the ratio
Fi/Fo; = 0.775/0.55 = 1.41 (cf. Report 3, p. 29). In order to verify
this conclusion, adrive current with higher F, values and shorter rise
time than in Fig. 11 should be used in the experiment (if T isnot decreased,
&ma will mask éi). With our present laboratory equipment, this could be
achieved by using a mercury-contact switch and a transmission line. As
explained previously, when such an attempt was made, . the signal-to-noise
ratio was too low to be analyzed meaningfully. We hope to overcome this

circuit problem in the future.

c. VARIATION OF $(¢) WITH F)

In Fig. 10, individual ¢(t) waveforms are shown for the different
values of F,. The effect of the magnitude of F, on the waveform of ¢(t)
is demonstrated qualitatively in Fig. 12 by showing a multiple exposure
of experimental ¢(t) oscillograms. The only difference between Fig. 12(a)
and Fig. 12(b) is the time scale and the duration of switching. In either

figure, the ¢(t) oscillograms correspond to F(t) drives of the same rise
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FIG. 12 MULTIPLE EXPOSURE OF <7§(f) WAVEFORMS OF CORE E -6 CORRESPONDING
TO F(1) PULSES OF DIFFERENT AMPLITUDES

time and the following FD values: 0.6, 0.8, 0.9, 1.0, 1.1, and 1.2 amp-
turn; the F(t) oscillogram shown above the ¢(t) oscillograms corresponds

to Fy = 1.2 amp-turn.

d. COMPUTED COMPONENTS OF (;S(t)

The ¢(t) waveforms shown in Figs. 10 and 11 are those of the
total ¢. The relative magnitudes of the three components of ¢(t) depend
on F(t). For example, computed ¢(t) and its components are shown in
Fig. 13 for the case of F, = 2.0 amp-turn and T =0.024 pusec. This in-
formation about @E(t), éi(t), and é;u(t) is a part of the computer output
(cf. Appendix E).

AND T
r

€. COMPUTED &>l.p AND T ws. Fp

In Sec. IB-2(d), we have calculated &i(t) [Egqs. (8)], and its

peak amplitude cf)l.p[Eq. (11)] for the case of F(t) with a ramp rise
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followed by a constant amplitude, Eq. (6). Similar computation was per-
- formed for the drive current expressed by Egs. (32) as part of the com-
puted @(t) in Figs. 10 and 11. Plots of (2)1.” vs. F, are shown in Fig. 14
for three values of rise time: T, = 0.1 usec, T, = 0.02 usec, and T =0.
The small variations around a smooth curve in each of the first two cases
stem from the small variations in the actual values of T . For the case
of T, =0, T,, = 0and d, = A (F,~F) " [Eq. (5)], where

F, = Fy, tanh (F,/F ) [Eq. (17)] and X, = 0.014 ohm/turn?-%amp?®-3.

e. ADDITIONAL LOW ¢;'CGHPONENT

If F < Fj, then c,'é.a = 0 and so
@ = P+, : (36)

Suppose that F is a rectangular pulse of amplitude F, and duration T. Let
us examine the amount of A contributed by fbe and f/)i by the time t = T,
before F begins to fall. Since ¢_ = ¢F,

€

]
Ag, = J €df = ¢€F, . (37)
0
Following Eq. (5),
T . . .
. v -1 -T(F-F_.)/C.
Mg, = Jqﬁidt = NC(Fp=F) " [1-e L (38)
0
As T — o, Ad)i —‘Ad)i(m), where
v -1
Aqﬁi(m) = MNCA(Fy - F) ! . (39)
Adding Ao, andAd)i(m), the total A¢ due to a step F, F = Fp, is
v.—1
A(b(w) = eF) + ?xiCi(FD - F) . (40)

Let us calculateAqﬁ(m) of Core E-6, assuming an FD value which
is less than Fj = 0.95 amp-turn, e.g., F, = 0.9 amp-turn. The core

parameters are as follows: € = 0.3895 muhy/turn?, v. = 1.3,

i
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Ki = 0.014 ohm/turn®-3amp®-3 ¢ = 0.145 amp-turn-usec (assumed to be same
as for T, = 0.02 usec), and F, 0.55 amp-turn. Substituting these values
into Eqs. (37), (39) and (40), we find that A¢_ = 0.034 maxwell,

[S¢i(m) = 0.148 maxwell andzﬁ¢(m) = 0.182 maxwell.

e -

Now consider the static ¢(F) curve. Starting from ¢ = ~¢,, the

total flux change involved in reachine a point (F,¢.) on this curve is
g g 14 P

Ao, =, +b . (41)

For Core E-6, F = F, = 0.9 amp-turn corresponds to ¢, = —0.12 maxwell, and

since ¢ = 3.45 maxwells,zﬁ¢d = 3.33 maxwells.

Comparing Ag, andA¢ .\, we find that (for Core E-6)
[&¢dﬂﬁ¢kw) = 3.3/0.182 = 18.3. We conclude from this result that the
model for ¢, given in Eq. (5) does not account for the very slow flux
switching involved in reaching a point on the static #(F) curve. This
conclusion is in agreement with the é(t) waveforms in Sets (a-1i), (b-i1)
and (c-11) of Figs. 10 and 11. One can detect that after the computed ¢
has decayed to a negligible value, a very low experimental ¢ continues to
exist. Physically, such a low ¢ results from the motion of few domain
walls that are obstructed far from their original position rather than
locally. If this interpretation is valid, this very low ¢ may be considered
as an additional component of éi whose amplitude is much smaller than
A (F - Fi)yi and whose time constant is so much larger than C,/(F=F))
that the product of its amplitude and its time constant is much larger than
KLCi(F - Fi)vi_l. An alternative source of this very low ¢ to be considered
is the main ¢ component, éna’ with F decreasing for decreasing F [similarly
to F,, Eq. (17)}. Future investigation of this very low éi component should
be based on correlation between measured ¢(F) curves obtained by rectangular

F pulses of different duration 7T and calculated Ag, —ZX¢(m).

5. SuMmMmARY

Verification of the models for the three components of ¢(t) was made
by comparing experimental ¢(t) and computed é(t)==$€(t)'+¢i(t)‘+¢ma(t)
during the beginning of the flux switching. The tested core was a thin
magnesium-manganese-zinc ferrite ring of OD/ID = 1.06 (Core E-6, Report 3,
p- 23; F_ = 0.9 amp-turn). The comparison was made for mmf pulses of
different amplitude, F,, and rise time, T : eight values of F, (ranging

from 0.6 to 2.4 amp-turns) for T, = 0.1 usec and seven values of F,
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(ranging from 0.6 to 2.0 amp-turns) for T, T 0.02 usec. Each case was
repeated twice, using different time scales. The core and circuit param-
eters were fed into a computer program which computed ée(t), éi(t), &ma(f)
and ¢(t). The resulting $(t) waveforms of the above 2 X 15 cases were
machine plotted, and are compared with the experimental oscillograms in
Figs. 10 and 11. From this comparison, the following observations are

made relative to Core E-6:

(1) There is a small delay (of the order of 0.15 T ) between
computed €F(t) and experimental $e(t) due, probably, to
viscous damping. An improved model for elastic switching

is Sag + ée = ¢F, where & 1s a constant proportional to

the viscous damping.

(2) The parameters Ki and Ci depend on Tr: as Tr decreases,
Ki increases (slightly) and Ci decreases.

(3) The analogy between ¢P==A(F'-F0)V anddnp =Ki(F‘—Fi)Vi agrees
with the analogy between fﬁp = pp(F"FO) and (}5”, =p,(F - FY)
that was proposed in Report 3. Furthermore, v = v,
and the ratio F;/Fj is close to the ratio F3/F,,. It
is expected, therefore, that Eq. (4) 1is valid for high
values of F). This may be verified by applying current
pulses of high amplitude and very short rise time, such

as obtained by using a mercury-relay pulser.

(4) The flux changezﬁ¢i(m) = ﬁ? éidt is much smaller than
the flux change, Ag, = by T b, involved in obtaining
a point on the static ®(F) curve. In order to account
for the latter, another term should be added to the ex-
pression for éi, Eq. (5). This term is expected to be
of the same form as the existing expression, except for a
much lower amplitude and a very much longer time constant.
Alternatively, most of A¢, may be accounted for by éma

if Fg‘becomes lower for low F values.

E. CONCLUSIONS

For the type of ferrite material investigated so far, the P(t) wave-

form resulting from a constant-amplitude mmf of a finite rise time consists

of three components: elastic, decaying inelastic, and main (bell-shaped)

inelastic.
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The elastic ¢ component is described by the model &E = €F. This
model results in a small delay between experimental and computed @(t).
This delay implies that an improved model for $€ 1s of the form

Sak + ée = €F, where & is a constant proportional to the viscous damping.

The decaying ¢ component, ii, is described by the model
éi = Ki(F - Fi)yi exp [—(t - T.)(F - Fi)/Ci], where Ai’ Fy., v,, and C,

01
are switching parameters and T, is the time F reaches F..

The amount of A¢ associated with reaching a point on the static @(F)
curve for F < Fg is much larger than Lf(%idt. In order to account for this
A @, the existing ¢ model needs to be modified either by adding a component
of the same form as &i, except of a much lower amplitude and of a much

longer time constant, or by lowering F, for low values of F, as was done

for Fi.

The main component, éna’ may be expressed by the model é_a = épn(¢),
where &p is the peak ¢, and 7(¢) = 1~ [(2¢ + & - b/ (b, + ¢,)1%, and

where, for a given F value, ¢d is the ¢ value on the static ¢(F) curve.

If F is large (compared with the coercive mmf, F_), computation of
éi + éua may be approximated by the é_a model alone if ¢, replaces ¢_in
the expression for 7(¢). The elastic component, ée, may be neglected if

only inelastic A¢ is of concern.
Further investigation is needed in the following areas:

(1) Improving the model for &E by including the effect of
viscous damping.

(2) Studying the effect of ¢ and switching history on e.
(3) Extending the investigation of éi to high values of F.

(4) Investigating the very slow ¢ component associated with
the static @(F) curve.

(5) Repeating the investigation of the ¢ components on other
types of magnetic materials.
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IT COMPUTATION OF FLUX SWITCHING IN MAGNETIC CIRCUITS

In Report 3, the switching model for the main component of ¢ was
applied (using a computer program) and verified experimentally for three
magnetic circuits: an unloaded core switched by step, ramp, triangular
and trapezoidal mmfs; a loaded core driven by step and ramp drives; and
a core-diode shift register. In this report, computer programs are
provided and the results are compared with experimental data for the

following four magnetic circuits:

(1) Unloaded core driven by F(t) of constant-amplitude,
FD, and rise-time, T ——computation vs. time of ée,

$., ® ., & and ¢. (See Sec. I-D-2-c.)

(2) A core loaded by an inductive load (R-L, R-L-C, and
R-L-C-diode) and driven by step and ramp mmf—computa-
tion vs. time of F, ¢, ¢, and the load current, using
a more exact algorithm than in Report 3.

(3) A core-diode-transistor binary counter—computation
(vs. time) of three currents and of F, ¢ and ¢ of each
of two cores.

(4) A loaded, saturable, three-leg core—computation
vs. time of F, ¢, and ¢ of each leg, and computation
of division of flux between two legs in parallel as
a function of drive current amplitude, load, and
relative leg dimensions.

Item (1) is treated in Sec. I-D; Items (2), (3), and (4) are treated in

the following sections.

A. LOADED CORE

1. INTRODUCTION

In Report 3, flux switching in a loaded core was analyzed (Report 3,
pp. 39-55) and a computer program was provided (Report 3, pp. 149-153)
for computation of ¢, ¢, and i, (the load current) vs. time. The load
consisted of six combinations of a resistance, an inductance, a capaci-
tance, and a diode: R, R-diode, R-L, R-C, R-L-C, and R-L-C-diode.

Computed and measured waveforms of ¢(t) and iL(t) were compared for
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step and ramp drives. The algorithm used to compute these variables was
the same regardless of the type of load. This resulted in accumulation

of error in the cases of inductive load (R-L, R-L-C, and R-L-C-diode).

Our main objective now is to improve the accuracy of computation for these
cases by using a more exact algorithm. An additional objective 1s to
explain why an iterative method of solving a transcendental equation

(such as Newton’s method) must be applied, as was done in Report 3, 1if

L = 0.

Let us summarize briefly the analysis in Report 3 (Fig. 14, p. 39,
and pp. 41-45). A drive current i, is applied in N, turns to a core
which is coupled by N_ turns to a load. The load is composed of a
resistance R , an inductance L, a capacitance C, and a diode. The diode

voltage is expressed as

i
Vy, = iLRd + Ekln (1 + 7—) , (42)
1]

where R, is a forward resistance, E, is a voltage constant and I, is
saturation current., Since F = Nji, = N_ i, and i, is a given function of
t, ¢(F,») may be written as P(t, i,,9). Letting R, + R, = R and

j:iLdt = q, the load loop equation is

1 dl,L IL .
7;-q + Ry t L T + Ekln (1 +-f;> - NC¢(t,¢,1L) = 0 . (43)

In Report 3, i, was solved for transcendentally, using Newton’s
method of successive iterations. In each jth iteration, corrected values
of ¢ and i, = g were used to correct the values of ¢ and g of the pre-
vious iteration, using Eq. (31) and its equivalence for gq. Although this
method worked well for all load cases, some error was accumulated at each
nth At as a result of approximating (di;/dt), by [iLn - iL("_l)]/At and
(d%i,/dt?) by [(di,/dt), = (diy/dt), . 1/Dt [cf. Report 3, Egs. (67),
(69), and (70), pp. 44-45]. If L # 0, this error may be reduced by using
a different method of evaluating i, in each iteration. We thus distin-

guish between two cases: L # 0 and L = 0.
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2. InpucTive LoabD

If L # 0, there is no need for a transcendental solution of i;. The
switching function P(t, ¢, iL) together with the second-order differential
equation, Eq. (43), may be written as a set of three simultaneous differen-

tial equations of the first order:

d¢ . :

— = b, ¢ i) [44(a)]
dq .

e (44(b)]
dig 1 ., e 1 . i

i T N o(t,o,i,) ~ c9” Ri, - Ekln(l + T;) . [44(e)]

In these equations, t is an independent variable, and ¢, g, and i, are
dependent variables. Note that, as required by the various methods of
numerical solutions of differential equations,’ differentials appear on
the left side of the equality signs only. The numerical solution of

Eqs. (44) may be achieved by various well-known methods, such as Adam’s,
Runge-Kutta’s, Milne’s, etc. The simple predictor-corrector method given
by Eqs. (29) and (31), which was also used in Report 3, will suffice in
this case. In every jth iteration, instead of solving for i, transcen-
dentally [cf. Report 3, Egs. (69) through (72), pp. 44-45], we first
evaluate (di /dt) using Eq. (44(c)], and then compute i,, from an expres-

sion analogous to Eq. (31), ti.e.,

iy, = ip(n-1 T 0.5 8eldiy/de) + (diy/de) 1 - (45)

Other than the above evaluation if i, , the algorithm for computing the

various variables if L # 0 is the same as in Report 3.

3. NONINDUCTIVE LoaD

If L = 0, then the loop equation, Eq. [44(c)], becomes

n
o
.

. ) 1 ) i
N o(t,o,1;) Bk Ri; — E,In (1 + ;‘) (46)

0
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Regardless of whether a diode is present in the load or not, dq/dt = i
cannot be expressed explicitly as a function of t, ¢, and g¢ because ¢ is
an implicit function of i - Hence, we are unable to reduce Egqs. (44) into
a set of two simultaneous differential equations with derivatives to the
left of the equality signs and functions of the variables (t,¢, and q)
only on the right side. For this reason, we are unable to use any of

the conventional methods of numerical solution of differential equations

directly. Instead, we substitute

g = q _, t 0.5 000+ i ] (47)

into Eq. (46), obtain an implicit equation in 1, , and solve for 1,
transcendentally. This explains the need for Newton’s method in the
algorithms described in Report 3. We could, of course, use other methods
for the transcendental solution of i, . We prefer, however, to use
Newton’s method because it is very simple and because 1t 1is characterized
by quadratic convergence,8 i.e., the error at the jth iteration is pro-
portional to the square of the error at the (j-1)th iteration (both errors
are fractional if the condition for convergence 1is satisfied), thus result-
ing in a relatively fast convergence. The pitfall to watch for when using

Newton’s method is when f' [cf. Eqs. (58) and (60) in Report 3] becomes

much smaller than unity.

4. EXPERIMENTAL AND COMPUTED ((¢t)AND iL(t) OF
INpucTIVELY LoADED CORE

Experimental and computed $(t) and i, (t) waveforms of a loaded core
driven by step and ramp drives were compared in Figs. 15 and 16 of Report 3
(pp. 48 through 51). The tested core was Core J-1 (Lockheed 145SC1,
145-mil OD, 90-mil ID) whose switching parameters (cf. Report 3, p. 23)
are as follows: li = 7.18 mm, I, = 11.58 mm, ¢, = 31.0 maxwells,

e 33.48 maxwells, H_ = 250 amp-turns/m, H, =26.0 amp-turns/m,
H 22.5 amp-turns/m, Fy = 0.27 amp-turn, v = 1.43,

n

s

A= 1.64ohm/turn2'43amp0'43, Fy = 0.55 amp-turn, P, = 2.27 ohms/turn?,
and Fg = 1.2 amp-turn. We have recomputed the ¢(t) and iL(t) waveforms
for the cases in which L # 0, using the modified algorithm described

above. The correspondingly modified computer program is given 1in

Appendix F. The results were machine plotted and are compared in




Fig. 15 for step-F drive and in Fig. 16 for ramp-F drive with the same
experimental oscillograms as in Report 3. It is quite clear that the
agreement 1is better than in Figs. 15 and 16 of Report 3. Note, however,
that the computed peak ¢ is now lower than the experimental peak ¢. This
result is of no surprise. In fact, it was expected (but not found) in
Report 3 (p. 47). Just as A and P, of ramp-F switching are smaller than
step-F A and p,» one expects A and Py of switching under a monotonically
decreasing F(t) to be larger than step-F values. Such is the condition
in the case of a loaded core switched by step-F or not-too-steep ramp-F
drives. The more inductive the load is, the steeper 1s the decrease of
F(t) as ¢ varies from -¢, to slightly above zero. This can be seen in
Figs. 17 and 18 of Report 3 (pp. 52 and 53). Since step-F values of A
and pp were used to compute the curves in Fig. 15, the resulting value

of peak ¢ is lower than the experimental value.

5. SUMMARY

A modification is made in the algorithm given in Report 3 ( p. 41-43)
for computing ¢(t) and i, (t) of a loaded core switched by an arbitrary

drive. If L # 0, conventional methods are used to solve three simultaneous

differential equations of the first order. If L = 0, the loop equation
is implicit in i, and Newton's method (or any other comparable method)
must be applied in the numerical solution of i,, ¢, and #. The corre-
sponding computer program is given in Appendix F. The results for

L # 0 are in a better agreement with experimental oscillograms than in

Report 3.

B. CORE- DIODE- TRANSISTOR BINARY COUNTER

1. OPERATION

a. TWO-COUNT FLUX SWITCHING

The circuit diagram for a single stage of a core-diode tran-
sistor binary counter is shown in Fig. 17* Note that Cores 1’ and 2'
belong to the next stage. The circuit operation is described briefly
as follows (circuit components and number of turns of windings used in
this description are defined in Fig. 17): Initially, Cores 1 and 2 are

in a CLEAR state. The counting operation is divided into four modes,

* This binary counter was developed by Alan J. DeVilbiss of Jet Propulsion Laboratory, Pasadena,
California, for a future Mariner spacecraft.
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FIG. 17 A SINGLE STAGE OF A CORE-DIODE-TRANSISTOR BINARY COUNTER

where Modes I and II correspond to a STORE count, and Modes IIT and IV
correspond to a CARRY count:

Mode I—An exponentially decaying current pulse, 1, sets Cores 1
and 2 simultaneously. The flux switching is relatively fast. Diode d,

is conducting, and the transistor is maintained in an OFF state.

Mode IT—An exponentially rising current pulse i clears Core 1
at a relatively slow switching rate, while Core 2 remains in a SET state.

Diode d, is conducting, and the transistor is maintained in the OFF state.

Mode III—An exponentially decaylng current pulse, i_,, tends to
set both cores, but since Core 2 1s already set, 1t only sets Core 1. The
voltage N81¢1 brings the transistor into the ON state, and the resulting

collector current 1, helps current i1, to set Core 1, thus maintaining
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the transistor in the ON state (positive feedback, characteristic of block-
ing oscillator performance). Current i_, as it builds up exponentially
through an R-L circuit (diode d, is blocked), switches relatively slowly
three additional cores that are not shown in Fig. 17: it clears (or tends
to clear) Core 1", which is similar to Core 1, except two stages ahead
(similarly, current i_, which clears Core 1 in Mode II, 1s generated two
stages behind); it clears a transfluxor core which is used for nondestruc-
tive readout of the binary state of the stage under discussion; and it

sets the transfluxor core of the next stage. Toward the end of switching
of Core 1, current i__ has decayed to a negligible value, current i_ is
approaching its asymptotic value, Ic = ¥/R, {to be exact, V stands for the
supply voltage minus the collector-emitter voltage), and the transistor
base current tends to decrease. Because of the decrease in i _ and the
base current and the increase in i_, at a certain instant the net mmf of
Core 2 becomes high enough to clear Core 2. As in the case of Core 1, a
positive feedback maintains the transistor in the ON state until Core 2
reaches a CLEAR state. The switching of both Core 1 and Core 2 inMode ITI
is relatively slow because it is done sequentially. Upon termination of
the switching in Core 2, the transistor turns off, Diode d, starts to
conduct current i, via R, and L, and the stored energy in the inductor
L is dissipated in resistances R, and R, and in switching Core 1’ and
Core 2' (if the latter is initially not fully set) by current pulse i
or in switching Core 1' alone (if Core 2’ is initially fully set) by
current pulse 1 _ . Note that the current pulses i  and i _ driving the
stage under discussion in Modes I and III, respectively, have been gen-

erated in a similar fashion in the previous stage.

Mode IV—A current pulse i_ clears Core 1 at a relatively slow
switching rate, while Core 2 remains in a CLEAR state and the transistor

is 1n the OFF state.

b. RANGE OF SUPPLY VOLTAGE

As the supply voltage, V, decreases below a certain value, the
binary counter continues to function properly even though the cores are
not fully set. A further decrease in ¥V will cause a further decrease in
Agp, and Ap,, and it becomes necessary to determine how low Ap, and O¢,

(or V) can be before the binary counter starts to malfunction. Let us
examine incomplete flux switching during a cycle of two counts (four modes

of operation), as shown in Fig. 18. In Mode I, switching is incomplete
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FIG. 18 INCOMPLETE FLUX SWITCHING IN FOUR MODES OF OPERATION
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because i_ either decays too fast or has a too-low amplitude or both
(flux switching is mmf limited). In Mode II, Core 1 is cleared to -¢,
(current i, is high for a long enough period tc¢ complete the required
amount of switching). In the beginning of Mode III, to be referred to

as Submode III-A, both cores start switching toward positive saturation

as in Mode I, until Core 2 reaches bositive saturation, and the transistor
turns on. Core 1 completes its switching to +¢_, and Core 2 is then
cleared to -¢_ because the transistor stays saturated as long as non-
negligible flux switching takes place in at least one of the cores. In
Mode IV, Core 1 is fully switched to -¢_ because i, is high for a long

enough period.

We see that the binary counter operates properly, even though
only partial switching takes place in Mode I. How low can A¢l and A¢2
be in Mode I? To answer this question, let us refer to Submode III-A.
In order to turn the transistor on, we must assure that Core 2 stops
switching before Core 1 stops switching, i.e., that Core 2 reaches
positive saturation before i, decays to the stop-switching threshold
value of Core 1. Let Ad,; and Ap,;;;, denote Ap, in Mode I and Sub-
mode III-A, respectively (ideally,;A(,‘lSzIIIA = 0). If both Ap,; and
Ap,yp1a are mmf-limited, and both are assumed te be governed by nearly
the same switching parameters, then A¢2I = A¢2IIIA < ¢,., because both
result from the same insufficient drive current, i Since we do not
want A¢21 + Op,ypa to be less than 2¢,, we conclude that Op, ; must

exceed ®. .

Let us examine A¢p,,,;, more carefully. In Submode III-A, Core 2
is initially in a partially switched state, and therefore both A and Fy
are smaller (e.g., by 30%) than if initially Py = —¢r. These two factors
are opposing: the decrease in A requires a larger A¢ZI, whereas the
decrease in F; allows Ag,; to be smaller. Which factor predominates
depends on the magnitude of the average net mmf of Core 2 during Sub-
mode III-A relative to F. We must also remember that because of the
“wing’’ in the static @¢(F) curve, Op,; + Ap, 1, may be siightly smaller
than 2¢ . It is thus quite clear that exact calculation of the lower
limit of A¢2I is extremely complex. Asan approximation, we shall main-
tain our previous conclusion that in order to turn the transistor on in
Mode III, we require that Ap,; > ¢ . This criterion may be used to

determine the minimum value of V, Vmin'
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Since the fast flux switching in Mode I determines the bottom

boundary of the supply voltage,
other modes of operation can be
net mmf follews the static ¢(F)
shall proceed with the analysis

and since the slow flux switching in the.
analyzed manually by assuming that the
curve [cf. Figs. 18(b), (c), and (d)] —we
of Mode I only.

9. ANALYs1s ofF Mope 1

a. SIMPLIFYING ASSUMPTIONS

Be fore analyzing Mode I, let us refer to Fig. 17 and examine

the termination of Mode ITI. When Core 2 is cleared to negative satura-

tion and éz approaches zero, the transistor starts to pull out of satura-

tion because of insufficient base current. As a result, i starts to drop

and a positive elastic &2 is generated. The voltage NBzézi which 1s

clamped by Diode dl, acts as a reverse bias on the transistor, and thus

causes the latter to turn off faster than if the bias voltage were zero.

As soon as the drop in 1, 1s such that
di,
~L 7 = iR, , (48)

Diode d, starts to conduct current i,. Equaticn (48) also holds true

when the transistor is completely turned off. The variation of i, during
the transient period in which the transistor is pulled out of saturation

depends on the base current and the collector current. A solution for

i, during this period is complex and 1is beyond the scope of this work.
We shall, therefore, simplify the problem by assuming that during the

above transient period, iL(t), as it rises from zero to Ic (the current

value that L tends to maintain), is given and that Eq.(48) holds, i.e

*

the voltage across R, and L is

di,
+L— .

1t (49)

. = Ryt

b. BASIC EQUATIONS

Mode I begins as soon as the transistor of the previous stage
starts to pull out of saturation. Based on the simplifying assumptions

above and since the forward voltage drop across Diode d, is much smaller
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than R i, + L(diL/dt), the equivalent circuit for Mode I is as shown in
Fig. 19. The total resistance of the windings with N , and N, turns
is denoted by R, and that of the windings with Ny, and Nj, turns is
denoted by R,.

Ng;

R Bl
13_ .
isd VYig di V4
+
+
L 5 iL—ig | ig
. -
— AN —
i Re
TA-5094-31

FIG. 19 EQUIVALENT CIRCUIT FOR MODE I OF A SINGLE STAGE
IN A CORE-DIODE-TRANSISTOR BINARY COUNTER

There are seven equations with seven unknowns. The seven
equations include two mﬁf equations (one for each core), two G(F,q)
equations (one for each core), and three loop equations. The unknowns
are the following time variables: i, (beyond its rise time), i, (the
current driving the cores), i, (the load current in Diode dl), Fl(the
net mmf of Core 1), F, (the net mmf of Core 2), ¢, (the flux of Core 1)
and ¢, (the flux of Core 2).

?

By inspection of Fig. 19, the mmf equations are

F, N,i, + Nyiy (50)

and

F, = N,,i, 'Nxzid . (51)
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Using Egqs. (2) and (18) through (20),

2

eF, + B(F,, b)) (52)

and

?, €F, + P(Fy,d,) (53)
where ¢(F,¢) = ¢ {1 - [(2¢ + &, = &)/ (¢, + ¢,)1%}. Note that ¢(F,¢) is
used as an approximation for éma(F,¢) + i}(F,t,Ti), Eq. (22). By inspec-

tion of Fig. 19, the three loop equations are

di
L . .
L i i Ry + i Ry + N 1§ + Ny, = 0 (54)
LBy f Nslél + staz - (i ~ iR, = 0 (55)
and
By TV, N31¢1 - stéz = 0 J [56(a)]
where [cf. Eq. (42)]
ta
Vv, = iR, + Ek_ln(l + —I:> (56(b)]

is the forward voltage drop across Diode d,.

We now wish to apply the models for inelastic and elastac

switching in the numerical solutions of Egs. (50) through (56).

3. TRANSCENDENTAL SOLUTION OF CURRENTS

We wish to solve Egqs. (50) through (56) at every nth At. For the
sake of convenieuce, the subscript n will be omitted entirely and the
subscripts (n-1), (n-2), etc., will be replaced by the subscripts (-1),

(-2), etc. In other words, at every nth At, we identify n with zero.

Since the functions F, ws. t and F, vs. t are not known a priorti,

we shall evaluate F, and F, as ratios of differences rather than dif-

ferentials, i.e.,

(F, = F,(<1,1/Dt (57)
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and

F, = [Fy, - F, )b (58)
Note that Fii-1y andF, ;) areknown quantities which were evaluated while
solving for the time variables of the previous At. Substitution of

Eqs. (50) and (57) into Eq. (52) and substitution of Eqs. (51) and Eq. (58)
into Eq. (53) results in two simultaneous nonlinear differential equations

which are formally expressed as

¢ = filiLigé) (59)

and

<.bZ = fz(is7id’¢2) . (60)
Substitution of Fgs. (59) and (60) into Eq. (54) gives

di,

1
4 L [iLRI iRy NG i) stfz(is:id'¢2)] - (el)

Note that Egs. (59), (60), and (61) form a set of three simultaneous

differential equations of the first order.

If Eqs. (55) and (56) did not include &1 and ¢2, they could be
solved for i_ and i;- Knowing i and i,, we could then use conventional
methods in order to solve Eqs. (59) through (61), which form a set of
three simultaneous differential equations with differentials on the
left side and functions of unknown time variables (¢H’¢2’ and i;) on
the right side of the equality signs. However, since Egqs. (55) and
(56) do include &1 and &5, we have to modify the conventional methods
of solving differential equations by incorporating a transcendental
solution for i, and i,, The latter will be done next, using Newton’s

. . . . . 9
method for solvin~ two simultaneous implicit equations.

Following Egs. (56) and (55), we are looking for the roots i, and
t, of the equations

P id
fo= Ngyd, =~ Ngdy - i (R, +R,) -Ekzn<1 +—I—> = 0 (62)
0
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and

g = npby t Noyd, + i (R ¥ Ry) = 1 Ry = 0 (63)
Following Eqs. (50) and (51), oF  /oi, = NBl'an/aid = ~Ng,,
OF, /91, = Ny, and oF,/9i = N_,. Hence, the partial derivatives of
f and g are as follows:
o f A g E,
3. Nj @y t Npyby + By + Ry ::—:“T; ) (64)
d
e NZ.p. + N2 ¢, + R, + R (65)
al B 32¢2 sl¢l 2 3 '
and
of d¢g o "
3¢ o1 = N Ngody ~ NoNpi#y . (66)
s d

The corrections to be added to i, and i  at each iteration (until both

are negligible) are’

. 1 ag af

§5i = —|[-f—= + L

¥ D < f 3, & 3 (67)
and

1 ag af

di, = =\ f 35 ~e& 37 (68)

T oo\l e, B e
where

C(f\ [2e\_ [2f\ (s
D i (aid) (ais) (ais><aid> . (69)

Under certain conditions, the convergence to the correct solution
of i, (or i ) is oscillatory and slow. This can be detected by noticing
that Sid (or Sis) alternates sign between two consecutive iterations and
that its absolute value decreases by only a small percentage. In many
cases, this situation may be remedied by correcting i, (or i ) by half

of di, (or 8i,), as was done in Report 3 [Eq. (58a), p. 42].
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The transcendental solution of i, and t_ described above will be

-incorporated into the numerical solution of the time variables, using

two types of numerical solutions of differential equations, a simple
method and a more complex one (Runge-Kutta’s followed by Adams’). This
duplication is designed in order to check the accuracy of using a simple
method in this type of problem by comparing the results with the ones

obtained by using a more complex and exact method.

4. COMPUTATION USING A SIMPLE METHOD
a. METHOD OF SOLUTION

Simple predictor-corrector equations, similar to Eqs. (29) and

(31), are used. Letting y stand for ¢1’¢2’ and 1@ these are:

L’
Y T Y(-gy *t 20ty _, (70)

for prediction, and, after y is evaluated from the differential equation

Y = Yoy t058ely +y. )] (71)

for correction.
b. OUTLINE FOR COMPUTER PROGRAM

The computer program for the core-diode-transistor binary
counter, using a simple method of solution, is given in Appendix G.
The program is written in ALGOL-60 language, and has the following

outline:

(1) Declare all identifiers (core parameters,
circuit parameters, variables, and mis-
cellaneous), output lists and formats.

(2) Declare PROCEDUREs ¢, (F,At,NV,®!), Appendix A,
and ¢(F,4,3,3*), Appendix D-2.

(3) Set values of core and circuit parameters.

(4) Set initial values of variables.
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(5) Compute a rough approximation for the value
of T using the relations*

v Rz
I, = ,;‘) ' (72)
1/ R, +0.6 p, (N2 + N2))
and
~ 2¢T(N§1 +N§2)
T = _
0.6 Nypo, I (N \Ngy * N Npy) = Fy(Ng, * Nyp)l (13)

Compute I_ = V/R,.

(6) Print heading (core parameters, circuit parameters,
and output variables) and initial values of output
variables.

(7) For every nth At during switching time, do the
following:

(a) Lower the At index of the time variables
computed previously by one.

(b) Set At = 7 _/1000 during the rise time, T,
of 1, (t) and At = 7_/500 for t > T .

(¢c) Ift <T,, compute i, from a given empirical
expression.

(d) Compute first approximations for L, (if
t >T), ¢1, and ¢2, using Eq.(70), and
for i and 1, using the relations

by T 21 (o) he(-2) and 1, ¥ 21, -1 ty(-g)

(e) Until a specified convergence condition is
achieved, compute the following steps in a
loop:

F,[Eq. (50)];

’f'z[EQ- (51)];

F,[Eq. (57)];

F,[Eq. (58)];

Grar = PF, &, Puar,d}) [Appendix D-2];
¢51 = ée(ﬁi’At: Nv:éél)[Appendix Al;
¢1 Pnal * éel;

Yy by [
¢1 B mal * €1’

Equations (72) and (73) have been derived by using average, constant values of p, 7:7,\24 0.6 p, in a
rough calculation of the switching time for MSI = 2(;5'. p
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(8)

¢’ @(F Py ¢! é;)[Appendix D-2];

na2 a2’
= ¢ (Fz' At, NV, ';2)[Appendix Al;
d) = ¢122 éﬁz'
¢2 = <z’.1.12 * by

If ¢t > T, dij/dt [Eq. (54)] and i; [Eq. (71)];
¢1[Eq. (7nHl;
¢,[Eq. (71)];

VolEq. (56b) if Ny,d, > Ny @ ; otherwise, Ny,d, - Ny, J;

f [Eq. (62)];

g [Eq. (63)];
9f/9t [Eq. (64)];
9/9i [Eq. (65)];
of /91 [[Eq. (66)];
9g/%i, = ~3f/3i
D [Eq. (69)];
5t ,[Eq. (67)];
5i [Eq. (68)].

s?

Add 8i, to previous t,, but if the sign of 31,
is different from the previous one, add only
0.5 8i,; add 8i_ to previous i., but if the

sign of Sis is different from the previous one,

add only 0.5 81

Repeat the above steps if either ,Sid' > 0.0001 lid,
or lBis' > 0.0001 ,isl, but no more than 19 times.
Count the number of times this convergence condition

fails to be satisfied.

Repeat Steps (a) through (e) unless @, = 0 and @, =
and ¢1 >=-0.9 ¢,.

Print output (t, i,, i, F, ¢1,¢1,F2:¢ éz' a Vs

éel éez’ number of iterations, cumulative number

of convergence failures), say, once every 20th At.
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Fig.

17,

C. EXPERIMENTAL VERIFICATION

A single stage of a core-diode-transistor binary counter,

was built using the following components:

Core

Lockheed 100SCl ferrite core (0D = 100 mils, ID = 70 mils,

h = 30 mils) whose switching parameters at room
temperature (25°C) are as follows: l. = 5.59 mm;
1 =7.98 mm; ¢, = 6.25 maxwells; & 7.00 max-

1
wglls; H, = 290 amp—turns/m; H, = 492.7 amp-turns/m;

H = 38.0 amp-turns/m;1/=1.207;
A=
0
P, = 0.948 ohm/turnz; F, = 0.805 amp-turn;

Fp = 3.0 amp-turn.

Circutt
Number of turns: N, = 11; N, = 12; Ng, = 16;
N,, = 205 N, = Ny = 12

Resistances (ohms): R, = 107.36; R, = 199.55;
R, - 0.34; R, = 0.53.

Inductance: L = 0.202 millihenry.

Diodes d, and d,: FD 643; E
I, = 0.0615 microampere; R,

0.0578 volt;

p =
= 0.1 ohm.

Transistor: 2N1613.

Drive

Supply voltage (minus collector-emitter voltage drop):

V = 97 volts; 8.6 volts.

Rise time of 1,: T = 0.13 microsecond. Using a
library computer program for polynomial curve
fitting, the following empirical expressions for
1, (1) during 0 <t < T were fit to the Tising
portion of iL(t) waveform (V = 27 volts) from

i, =0 (at t = 0) to i, = 0.252 ampere (at

t"= 0.13 usec), in which I = V/R , t is 1in
seconds, and T =13 = t ° 108

1.02 - 101%¢8/3 if 0<t<0.02°107°

0.64 ohm/turn2'207amp0'207; F! = 0.35 amp-turn;

4+10% = 0.05 if 0.02°1076 < ¢ <0.06" 1076

0.252 = 0.01(0.00947 + 7,{-0.3169 * T,[1.729261

+ T (-0.575047 + T, * 0.073769)1))  if 0.06°107° <t <0.13-107¢
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The above core, circuit, and drive parameters were inserted
‘into the computer program, and the results were machine plotted. Experi-
mental oscillograms of L, (), L (1), él(t), éz(t), 1a(t), V,(t) were
superimposed on computed waveforms. These are compared in Fig. 20 for

V = 27.0 volts and in Fig. 21 for V = 8.6 volts.
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FIG. 21 EXPERIMENTAL AND COMPUTED CURRENT AND VOLTAGE WAVEFORMS IN MODE I
OF A CORE-DIODE-TRANSISTOR BINARY COUNTER FOR V = 8.6 VOLTS

Time scale = 0,2 usec/major div.

5. COMPUTATION USING RUNGE-KUTTA. AND ADAMS METHODS

a. METHOD OF SOLUTION

The computation described in the previous section is based on
a simple method of solving a set of differential equations. One may, then,

doubt the accuracy of the computation. In order to check this accuracy,

a second computer program was written, using conventional and more complex

methods of solution: the Runge-Kutta method for starting the computation
in the first four At, and the Adams method thereafter. The description

of these methods may be found in several textbooks. "'?
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b. COMPUTER PROGRAM

The computer program for the core-diode-transistor binary
counter, using the Runge-Kutta and Adams methods, is given in Appendix H.
The program language is ALGOL-60. The outline of this program is similar
to the outline of the program using simple methods of solution, Part B-4-b,
except for the following. The differential equations and the transcen-
dental solutions for i, and i, are declared in a special PROCEDURE,
F(X, Y, DX) in which X stands for the independent variable (t), Y stands
for an array of the dependent variables (#,, ¢,, and i,), and DX stands
for an array of the derivatives (él, éz' and di;/dt).

The computer program for the Runge-Kutta method is a slightly
modified version of a library PROCEDURE RKSTARTS (K, NF, X1, H, Y, YPR, F) 1
where K is the number of differential equations (here, K = 3), NF is the
number of At steps for which the computation is repeated (with the use of
Adams method, NF = 4), X1 is the initial value of the independent variable
(here, X1 = t, = 0), H is the step size (here, H= At), Y and YPR are
identifiers for two (NF + 1) « K arrays for storing the values of the
dependent variables and their derivatives, respectively, (at t = 0, Ag,
2At, ..., NF + At), and F is the PROCEDURE F(X, Y, DX). The computer pro-
gram for the Adams method is also a slightly modified versionof a library
PROCEDURE,!! ADAMS (X, Y, YPRIME, N, EU, EL, EPS, H, HMIN), where X is the
independent variable (t), Y and YPRIME are arrays similar to those used
above for the dependent variables and their derivatives, N is the number
of differential equations (here, N = 3), EU and EL are upper and lower
bounds, respectively, of relative error, EPS is the minimum absolute value
for any dependent variable to be used as a reference for evaluation of
the relative error, H is the step size (At) that depends on EU and EL (if
any equation error exceeds EU, H is halved, and if ell errors are below
EL, H is doubled), and HMIN is the minimum value that H may be reduced to.
It can be seen in Appendix H that At = 7 /500, where 7_ is evaluated from
Egs. (72) and (73), and min(At) = At/10. Also, during 0 < ¢t < T, ,
EU = 0.001 and EL = 0.0001, whereas if t > T , EU = 0.005 and EL = 0.001.
For t > T, diL/dt was solved for, using Eq. (54), but for ¢t < T, diL/dt
was derived by differentiating Eq. (74):
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9.72 - 10194573 if 0<t<0,02+107°
dip I, 4+ 108 if 0.02-1076<¢<0.06°107%
dt  0.252 105{-0.316910 + T, [3.458522

|

+ T (-1.727841 + T, * 0.295076)]} if  0.06° 1076<¢<0.13-10°°

(75)
where t is measured in seconds and T, = 13 = ¢t ° 108,

c. RESULTS

The computed results came out very close to those obtained by
the simple method of solution. The largest differences were in the third
place after the decimal point, and could hardly be detected in the machine
plots of the results. This 1s demonstrated in Fig. 22 by superimposing
computed él(t) and éz(t) waveforms for V = 27 and V = 8.6 volts obtained
by the two methods of solution. The agreement between any other pair of

computed waveforms is either similar to or better than that shown 1in

Fig. 22.

6. DIiscusSSION
a. VALIDITY OF COMPUTATION

The agreement between the computed and the experimental results
is satisfactory in general. In the case of 1,(t), the agreement is poor
because i, 1s a nonlinear function of the voltage across the diode, V,,
and because Vd is the difference between two voltages, NBZ¢2 and Nalél’
whose magnitudes are close to each other. Any small relative error in
¢2 or ¢1 or both (if of opposite signs) will result in a magnified rela-

tive error in i, if ¥V, 1s above the “bias” voltage, i.e., above the knee

of the forward characteristic of the diode.

The computation of the time variables during the rise time of
i, (t) is limited by two drawbacks: First, the collector current, i, 1s
ignored by assuming that L(di_/dt) *+ i R = 0, Eq. (48), while the tran-
sistor pulls out of saturation. Second, empirical expressions for i, (t)
are fit to experimental data. Both drawbacks could be overcome by incor-
porating a dynamic switching model for the transistor. This was not done

because of the added complexity resulting from the use of this model and
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FIG. 22 SUPERPOSITION OF $(ﬂ WAVEFORMS COMPUTED BY A SIMPLE METHOD
AND (1) WAVEFORMS COMPUTED BY RUNGE-KUTTA AND ADAMS METHODS

because such a model is beyond the scope of our work. Instead of fitting
an exact function for iL(t), we could have assumed a sinusoidal function

or a ramp function between t = 0 and ¢t = T Although such alternatives

.-
do not depend on curve fitting, the rise time still has to be furnished
and the results of computation include larger errors. Another alterna-
tive with an even larger error is to ignore the switching time of the

transistor and assume that Tr = 0.
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b. VARIATIONS OF ¢1(F1) and ¢2(F2) DURING SWITCHING TIME

Having computed F,, ¢, F,, and ¢, vs. t, we are able to deter-
mine the variations of ¢, vs. F, and ¢, vs. F, during the switching time
by treating t as a parameter. These variations were machine plotted for
the cases of V = 27 volts and V = 8.6 volts, and are shown superimposed

on manually plotted static @(F) curves in Fig. 23.

It can be seen in Fig. 23 that the flux switching is complete
for V = 27 volts, but for V = 8.6 volts, the flux switching is only
partial. Based on the criterion that the lower boundary of V, V
determined by Ap,; = ¢, (cf. Sec. II-B-1-b), it can be seen that
V = 8.6 volts is close to V

int 18

min By repeating the computation with other
values of V it was found that V_, = 7.1 volts. This value agrees with

experimental observations.

c. METHODS OF COMPUTATION

The results of computation using the Runge-Kutta and the Adams
methods of solution were practically identical with the results obtained
by using the simple method of computation. Hence, the results of either
method may be trusted to be essentially the true solutions, i.e., the

computational errors are negligible.

Although library computer PROCEDUREs are available for both
the Runge-Kutta and the Adams methods of solution, the application of
these PROCEDUREs is not easier (and may even be harder) than writing
the whole computer program from scratch and using the simple predictor-
corrector method. This is so because most of the computation steps
using the simple method, which revolves around the transcendental solu-
tion of i, and i, as well as the differential equations, must be pro-
vided in the F(X, Y, DX) PROCEDURE. In addition, for the same specified
accuracy, the computation time (including compiling time) using the
simple method is much shorter (approximately by a factor of 4) than the

one using the Runge-Kutta and the Adams methods.

Since the results of the two methods of computation are essentially

the same, and since the simple method requires much less computer time for

the same accuracy, we conclude that, for problems of this type, the simple
predictor-corrector method of solution is preferred. We expect this to

be true for even more complicated magnetic circuit problems.
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7. SUMMARY

The operation of a core-diode-transistor binary counter 18 described
by dividing a two-count period into four modes of operation: Mode I, dur-
ing which both cores switch simultaneously relatively fast; and Modes II,
111, and IV, during which one core at a time switches relatively slowly.

A computational analysis of Mode I is provided for evaluating five time
variables (@, byr T i, and i,) by solving five implicit equations,
three of which are differential. The computation ;jnvolves Newton’s method
for the transcendental solution of i, and i,, in addition to a predictor-
corrector method for the solution of a set of differential equations.

Two methods of solution are applied, a simple one and the Bunge-Kutta and
Adams method. The results are practically identical, and the agreement
with experimental data is satisfactory. The minimum supply voltage 1s

computed, and its value 1s in agreement with experimental observation.

C. FLUX DIVISION IN A LOADED SATURABLE CORE
1. INTRODUCTION

The problem of flux division in a multipath core was described in
Report 2 (pp. 24-48; 83-95). Calculation of flux division in a loaded
saturable three-leg core, which is initially in a CLEAR state, was
carried out. The calculation was based on the simple switching model
¢ =@, 1 - (¢/® )], which is valid only if F is large enough to switch
¢ from ¢ = =¢, to b = TP, Despite the simplicity of this model (relative
to the more exact models we now employ), the calculation involved a large
amount of algebraic manipulations and, except for very high drive current,
instantaneous values of F had to be approximated by time-averaged values
of F. The agreement with experimental data for low drive-current amplitude
was not satisfactory because of the limitations of the model. In addition,
1t was found laterthhat the experimental data, which had been recorded at
a temperature of 29 £2°C, was very sensitive to temperature, and as a result

had to be recorded again at a temperature that was tightly controlledat 29+0.5 C.

Our objective now is to improve the computation of flux division de-
scribed in Report 2 by overcoming most of the above-mentioned drawbacks.
Specifically, we shall employ our latest switching models for ¢ma and éi,
we shall avoid the struggle against a complex algebra by resorting to a

pnumerical solution of the basic equations, We€ shall compute instantaneous
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(rather than average) values of the time variables, and we shall compare

the results with the more reliable experimental datal? (taken at

29 £ 0.5°C).

2. EXPERIMENT

The core geometry, the circuit, and the drive current involved in
the flux-division experiment were given in Fig. 10 of Report 2. For the
convenience of the reader, this figure is reproduced in Fig. 24. A
three-leg saturable ferrite core, whose main leg (Leg m) has twice the
flux capacity of each of the other legs (Legs 3 and 4), is initially in
a CLEAR state, i.e., ¢. = -2¢>r and ¢3 = ¢4 = -¢r. With Leg 4 loaded by
a resistance R, across N, turns, a SET drive mmf of constant amplitude,
NI, is applied to Leg m, and its duration, T, is adjusted so that

Ap, = 20 .

We wish to compute the variations of F(t), &(t), and #(t) in each
leg during the switching time and then compute the flux division ratio,
D = A¢3/A¢4, for various magnitudes of drive current, load, and leg-length
ratio, 1,/1,.

I_I_ + . ¢m wyzw zw /2

T RO -3006-168

FIG. 24 FLUX DIVISION IN A LOADED SATURABLE
THREE-LEG CORE
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3. COMPUTATIONAL ANALYSIS
a. BASIC EQUATIONS

Because 1inelastic flu* division is of interest, we shall neglect
the elastic component of ¢, ¢_. However, since NI may be relatively low,
Eqs. (18), (19),
and (21). Only if NI is large enough to switch all legs relatively fast

we have to distinguish between ¢i, Eq. (5), and éua,
can we combine ¢i and é_a into ¢ expressed by Egqs. (18) through (20).
éi' ¢, ¢, F, and T, of Leg m, Leg 3, and Leg 4 by Sub-

scripts m, 3, and 4, respectively, three differential equations are

Designating ¢

ma’

written formally as follows:

én = (zpnam(Fm’d)m) + éim(Fu’t’Tiu)' (76)
By = Faes(Fydy) + & 3(Fgut,Tyy), (77)

and A
B, = D (Fud) + @ (Fyt,T ) . (78)

By inspection of Fig. (24),
F, = F, + (N}/R)®,, (79)
F =N - F,, (80)

and

b= b+, - (81)

Equations (76) through (81) contain six dependent variables:
b.. Py by F,. Fy, and F,. We now wish to solve for these variables

numerically.

b. METHOD OF COMPUTATION

For a given value of t, the values of T,.» T3 and T , are
known, and $4, Eq. (78), is a function of F, and Py- Therefore, follow-
ing Eqs. (79) and (80), F, and F_ are also functions of F, and ¢4.

When the latter are substituted into Egs. (76) and (77), we obtain a

set of three differential equations of the form
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b, = fAF, 0,9, (82)

Py = f3(Fpd,.¢,), (83)
and

Py = fFpo) (84)

Any of the conventional methods of solution of ., ¢;, and ¢, must be
supplemented by the transcendental solution of F,, which is based on
substitution of Egs. (82) through (84) into Eq. (81). Thus, we are

looking for the root F, of the equation
fo= &+, -d, = 0 . (85)

Following Egs. (79) and (80),

P 1 L 3. (86)
OFs  OF, R, ¢

Differentiation of Eq. (85) with respect to F,, and substitution of
Eq. (86) give

3f N ¥
¥, 1= (@ F Py 1+R—L<i>4 + @, (87)

Following Newton’s method, the iterative correction for F4 is —f/f'.

However, if the sign of this correction alternates, the correction will

be only -0.5f/f".
c. SWITCHING PARAMETERS

The switching parameters of the three legs differ from each
other because of differences in leg dimensions (width and length). These
parameters are evaluated using the following material parameters (cf. pp. 37-
41 of Report 2, and Sec. I-B-2-e in this report): B, B, H , H,. H,

"
Hy, v, «, Hy,, Hg, {p, Voo Koo M, oand Hy .
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In analogy to Egqs. (24) and (25) of Report 3 (pp. 17-18), the
continuity of BP vs. H (cf. Fig. 15 in Report 2) at H=H, requires the

following relationships:

vl - H&
Hp = -1 (88)
and .
g, = «v(Hy —HDYD . (89)

Following Eqs. (88), (89), (91), and (92) of Report 2 (pp. 39-40),
Eqs. (26) through (29) of Report 3 (pp. 18-19) and Eqs. (14) through (16)
of this report, the switching parameters of a leg are expressed by the

following functions of material parameters and leg dimensions

[1,, 1, L= (1, +1,)/2, and 4 = hvl: &, = 4B & = AB Fy = UH;;
Fp = lHy Fy = Wy P, = CpA/ L A= kA/(IY); Fry = Hlg Fyy = Hl
V, = (¢, ~ ¢ )V/H (1, - 1)]; V, = (&, T &,) Hq/[Hn(lo - 1]

>
n

KiA/(lVi); C, = Mil; and F,, = Hy l.. These expressions are used

A

to compute the switching parameters of Leg m, Leg 3, and Leg 4.

d. ESTIMATION OF 7 FOR DETERMINATION OF At

In most of the magnetic circuit computer programs described so
far, we have determined At as a given fraction of an estimated switching

time, 7, e.g., Ot = 7,/200. The value of 7  was calculated roughly using

basically the relation 2¢, = L;‘;Fexdt, where ; 0.6pp'is the average

= F - Fy (actually, F,, = F = F,, but in order to ob-

ex

value of p, and F_
tain a positive value of 7  if Fy < F < F, F, was replaced by Fy). See,
for example, Eqs. (46), (47), and (90) in Report 3(pp. 26 and 63), and
Egs. (72) and (73) in this report. As long as F is not close to Fg, such
an estimation of 7_, crude as it is, is accepted because the length of At
is not crucial. However, if F is close to F, the resulting At becomes much
too short because pp(F - Fg) >> ép. In order to get a closer estimate
for 7_, the relation ép = A(F - FS)V should be used instead of

ép = PP(F - Fg). Hence,

.
.
: 0.3N(F - Fy)*

"

(90)

Equation (90) should be used if Fj < F < F;, but may also be used if F

is not much larger than Fg.
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Suppose that Leg 4 is so long that é. = @s. In this case, the
switching path is composed of Legs m and 3 in series. If NI is not much

larger than Fo. Fgyy, then H_ or H; is not much larger than Hy, and the

difference between H_  and H; (cf. Report 2, Fig. 16, p- 43) may be neglected.

Under this condition, the relation @ = $_ = ¢3 leads to an approximate

expression for A of Legs m and 3 in series:

1
A= .
- - ) (91)

+
AY/v AL/v
- 3

‘

Substitutions of Eq. (91), F = F_ + F3 = NI, and ¢, = ®,./2 into Eq. (90)

give

1 1 v
+
¢rl K:/V )\;/V * (92)
T 4
s 0.6 - _ pu
NI FO- F03

e. DRIVE CURRENT

In view of the fact that the drive current has a finite rise

time, T , we shall replace NI in Eq. (80) by Ni, where

'&I — cos T L if t <T

2 T g

Nt = . (93)
NI if t>T

r

4. CoMPUTER PROGRAM
a. & PROCEDUREs

The switching parameters of the three legs are different (because
of the difference in dimensions). Hence, six separate PROCEDUREs are
needed in order to compute éi and éua of each leg. 1In order to save
program writing, DEFINE declarationslé are made only once for the steps
involved in the @ ,(F,t,T ) PROCEDURE, Appendix B, and the &, _(F,¢,¢,,3')
PROCEDURE, Appendix C. Fach of these declarations is used in a correspond-
ing ¢ PROCEDUKE of a given leg after its identifiers have been identified
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(by using DEFINE declarations) with the corresponding identifiers of the
given leg. For example, the éim(Fm,t,Tim) PROCEDURE is generated by
identifying F_ with F, @, with ¢, etc., and by calling the identifier
of the DEFINE declaration in which the steps involved in the éi(F,t,Ti)
PROCEDURE are included [alternatively, we may call the éi(F,t,Ti) PRO-
CEDURE itself, but this results in a longer running time of the computer) .

There are other ways to achieve the same goal. For example,
the switching parameters may be declared as formal input parameters of
the ¢ PROCEDURE (in addition to the existing ones). If the ¢ PROCEDURE
of each leg is called (in the main program) more than twice, say, this
alternative is too lengthy. Another alternative is to fill three arrays,
one for each leg, with the switching parameters, and to replace each
switching parameter in the declaration of the ¢ PROCEDURE by the corre-
sponding address in the array. The main drawback of this alternative
is that it is hard to associate by inspection a given array address with

the name of the corresponding switching parameter.

b. MULTIPLE OUTPUT

Three types of output may be needed from the computer program

of flux division:

(1) Flux switching in each leg vs. time for given
values of N%/RL, 14/13, and NI;

(2) D vs. NI, with Nz/RL as a parameter, for a
given value of 1, /1;; and

(3) D ws. L,/1y, with Nz/RL as a parameter, for a
given value of NI.

Which of these output types is to be executed depends on the value 1, 2,

or 3 assigned to an identifier SW in the program.

c. PROGRAM OUTLINE

The computer program for flux division is given 1in Appendix I,
using the language ALGOL-60. The program outline is as follows.
(1) Declare all identifiers (material parameters, leg
dimensions, switching parameters, circuit parameters,

variables, and miscellaneous), output lists and
"formats.
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(2)

(3)
(4)

(5)

(6)
(7)

Declare the definitions of éi (Appendix B)

and é.a (Appendix C). Declare the following
PROCEDUREs:: d)in’ &.a.’ d>i3' ¢IG3’ Cz)i:l.' ¢.04’
and tanh (Xl). Define “mm” as 10"3(in order
to maintain MKS units while writing leg dimen-
sions in mm).

Set SK to 1, 2, or 3, depending on the type of
output required.

Set the values of the material parameters.

Set and compute the dimensions and switching
parameters of Legs m and 3. Set and compute
v,, A4, ¢r4, and Py

If S¥ = 3, print heading for type-3 output.

For each of several values of S = l4/l3, do the
following:

(A) Complete computation of the dimensions and
switching parameters of Leg 4.

(B) If SW = 2, print heading for type-2 output.

(C) Set the value of the rise time, T _, of
the drive current.

(D) For each of several values of Nf/RL, do the

following:

1. For each of several values of NI, do
the following:

(1) If S¥ = 1, print heading for type-1

output.

(11) Set the initial conditions (t = 0;
by = =B, Py o= by b, = D
Fo=Fy=F, =0 é;: by = @, = 0).

(i11) Compute 7., using Eq. (92).
Set At = T _/200.

(iv) For each At during switching time,

do the following
(a) Compute t = to.1y 1At

Compute Ni, using Eq. (93).

(b) Lower the At index of previously
Compur‘ed ¢.; qs.; ¢3; ¢3’ ¢47 ¢4'

and F4.
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(c) Use the relation y = 2y(_1) = Y(-2)

to predict a first approximation for
y = @, by Py and F,

(d) Until a specified convergence condl-
tion is achieved, compute the follow-
ing steps in a loop; for each leg, use
the relation F, = F, tanh (F/F, )

Eq. (17) call the corresponding éna
and ii PROCEDUREs, and correct ¢
according to ¢ = ¢yt Atlp+d o, )/2,
Eq. 31}

F,(previous F, plus 5F4); F, .

¢, = ¢ + ¢, FylEq. (19)]5 Fi3

b, = 2., " Gy Py FolEq. (80):

F.

¢

P

mai

; - b .t d, b, flEq. (85)];
. e TPl B Pray T Py

= s T Fie fUIEa 8D

oF , 'f/f (if 5F, changes sign,

SF4 -0.5 f/f'). Repeat the above
steps 1f If[ > 0.0001 ¢ru/

more than 19 times. Count the number

1]
S O B

~ 3 ~3

., but no

of times this convergence condition

fails to be satisfied.
(v) If SW =1, print type-l output (t, ¢
@ml Fn’ ¢3’ ¢3' F3’ ¢4) ¢4) F4l Nl’
number of iterations) once, say, every

fifth At.

»
n

(vi) If ¢ > -0.99 ¢, , terminate switching
when either ¢_> 0 or ¢ < 0.0001 volt/turn.

‘vi,1 Compute tne net flux changes during the
switching time: Ap, = ¢g + ¢,, and
N o= o, Tt
¥4 P4 Fra

{(viii) Compute flux-division ratio, D==A¢3/A¢4.

(ix) If SW = 2, store the value of D in a
one-dimensional array (at a location
corresponding to the value of NI). If

SW = 3, store the value of D in a
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two-dimensional array (at a location

corresponding to the values of NZ/RL and
1,/1,).

2. If SW = 2, print type-2 output (Nf/RL, D vs. NI,
and the cumulative number of convergence failures).
If S¥ = 3, store the values of Nf/RL and the
cumulative number of convergence failures in

the above two-dimensional array.

(E) If SW = 3, Print type-3 output (for each value of

Nf/RL, D vs. l4/l3 and the cumulative number of con-
vergence failures),

5. EXPERINENTAL VERIFICATION

a. CORE

The saturable core used ip the flux-division experiment was
referred to as Core S in Report 2 (Fig. 22, P 62). The core was cut
ultrasonically from a 1/2-inch-diameter ferrite disk whose material is
the same as that of Core E-6: Telemeter Magnetics, T-5, of nominal

g

composition [Mgo.”Zno_ano.sa]'H[Mno_“Feo‘_74 2 4+ The material
parameters of CoreS at T=29°C are given as follows: B=0.23 wb/m?;

B, 0.2484 wb/m?; H, = 310 amp-turns/m; Hq = 35.0 amp-turns/m;
H

H

. 30.0 amp-turns/m; Hg.= 40.0 amp-turns/m; v = 1.30; «=3400 ohms/turn®3
amp .3mo.7; H, = 61.0 amp-turns/m; HB = 131.0 amp-turns/m [Eq. (88)];

CP 17,105 ohms/turn?m[Eq. (89)]; v, = 1.3; « 592 ohms/turn?-3
amp°'3m°'7; M, = 10.7 amp-turns-usec/m; and Hy., = 24.8 amp-turns/m.

The dimensions and computed switching parameters of each leg are given

in Table .

(=}

i

b. CIRCUIT DRIVE

Four values of Nf/RL (in turns?/ohm) were tested in the experi-
ment (Fig. 24): 0 (no load), 1.000 (N, = 1; R, = 1.00 ohm), 3.962 (N, =2;
R, = 1.01 ohm), and 9.594 (N, = 2; R, = 0.42 ohm). The temperature was
kept at 29 + (0.5°C. The drive-current rise time was near (.08 usec and

the mmf amplitude NI was varied between 1.1 amp-turn and 4.0 amp-turns.
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Table 1
LEG DIMENSIONS AND SWITCHING PARAMETERS OF CORE S .

LEG LEG » LEG 3 LEG 4

Dimensions

h (mm) 1.31 1.31 1.31

I, (mm) 14.363 4.310 7.887
1, (mm) 19.151 5,108 9.348
I (mm) 16.757 4,709 8.617
w (mm) 1.016 0.508 0.508
A (mm?) 1.33 0.665 0.665

Switching parameters

¢ (maxwells) 30.612 15.306 | 15.306
@, (maxwells) 33.061 16. 531 16.531
A (ohms/turn®* Samp’*® 0.921 2.398 1.093
Fy (amp-turn) 0.670 0.188 0.345
o, (ohms/turn?) 1.359 2.417 1.321
Fy (amp-turn) 1.022 0.287 0.526
Fg (amp-turns) 2.195 0.617 1.129
A, (ohm/turn?* 3amp’*?) 0.160 0.417 0.190
C, (amp-turn-usec) 0.179 0.050 0.092
Fy, (amp-turn) 0.356 0.107 0.196

c. EXPERIMENTAL AND COMPUTED é(t) WAVEFORMS

A comparison is made in Fig. 25 between experimental and computed
waveforms of ém(t), éa(t), and ¢4(t) for NE/RL = (0 and NI = 2.0 amp-turns.
The computation was performed on a Burroughs B-5500 computer. The com-
puted waveforms were drawn manually, using type-1 output results. The
ringing in the $(t) oscillograms was caused by the ringing in the drive
MMF Ni(t), which is also shown in Fig. 25.
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FIG.25 EXPERIMENTAL (SOLID LINE) AND COMPUTED (DOTTED LINE)
Ni(t) AND ¢(t) WAVEFORMS OF CORE S ({4/15 = 1.83), DRIVEN
UNLOADED BY MMF Ni OF 2.0 AMP-TURNS IN A FLUX-DIVISION
EXPERIMENT
Time scale = 0.2 usec/major div.; Ni scale = 1.0 amp-turn/major div.;
},, scale = 0.2 volt/turn/major div.; ¢, scale = 0.25 volt/turn/major
div.; ¢, scale = 0.05 volt/turn/major div.

d. MEASURED AND COMPUTED D vs. NI WITH
N}/R, AS A PARAMETER

A comparison is made in Fig. 26 between measured and computed
D vs. NI for NE/RL = 0, 1.000, 3.962, and 9.524 turnsz/ohm. The computed

curves were drawn manually, using type-2 output results.

€. COMPUTED D vs. l,/l, WITH yf/nL
AS A PARAMETER

Computed curves of D ws. l,/l, are shown in Fig. 27 for four
values of Nf/RL (0,5,10, and 25 turn?/ohm) and two values of NI (10 and 100
amp-turns). The core is assumed to be identical with Core S, except for
the length of Leg 4. The plots were drawn manually, using type-3

output results.

83



30 T l T T
= CALCULATED
- — — MEASURED NE/RL‘ 9.524
- (N=2; R o.429)\ .
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FIG. 26 MEASURED AND COMPUTED FLUX-DIVISION RATIO vs. MMF WITH LOAD

AS A PARAMETER FOR CORE S '([,/l; = 1.83)

84




100

| § 4
r r l ] l !,// T T /
P // 4
// x/ //
%0 // / 7/
/ 7/ 4
——o0——o0— NI = 100 amp-turns // 4 ’/
——x=w=x— NI = 0 amp-turns // / /

la/ls—

TC-5094-39

FIG. 27 COMPUTED PLOTS OF FLUX-DIVISION RATIO vs. LEG-LENGTH RATIO
WITH LOAD AS A PARAMETER AND NI OF 10 AND 100 AMP-TURNS
FOR A CORE IDENTICAL WITH CORE S EXCEPT FOR THE LENGTH OF LEG 4
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6. DiscussioN
a. &(t) WAVEFORMS

The agreement between experimental and computed ¢m(t), ¢3(t),
and ¢4(t) in Fig. 25 is very satisfactory. The slight disagreement may
be attributed to the difference between the actual waveform of the drive
current and the assumed function for i{t). The experimental initial
¢ spikes are higher than the computed ones. This may be attributed to

the omission of the ¢E component from the computation.

The frequency of ringing in the Ni(t) is the same as in the ¢(t) of
each leg. We thus conclude that the ®(t) ringing is not pickup but actual
variations in ®(t). Elimination of the drive-current ringing would prob-

ably result in elimination of the ¢(t) ringing.

b. D vs. NI WITH NE/RL AS A PARAMETER

The agreement between experimental and computed D vs. NI for
the different loads in Fig. 26 is much better than the agreement in
Report 2 (Fig. 36, p. 88) in the entire range of NI, and is better than
the agreement in Ref. 12 for low values of NI.*  Let us distinguish be-
tween two regions of NI: NI between 1.1 and 2.1 amp-turns, and NI above

2.1 amp-turns.

In the region of high NI, the agreement 1s petter than in Report
2, but about the same as 1n Ref. 12. This may be attributed to two factors.
First, the validity of the experimental data in Report 2 is in doubt
because the temperature was not regulated tightly enough (29 % 2°C com-
pared with 29 £ 0.5°C in Ref. 12). Second, the switching model used in
Report 2 and Ref. 12, ¢ = ¢, [1 - (¢/#,)%), is valid only for high F
values. This can be seen by letting ¢, = &, in 7M(¢) of Eq. (20) (which
may be used to compute éi + &mu if F is high enough).

Consider now the region of low NI. Although there is room for
further improvement in the agreement between computed and experimental
results in Fig. 26, it should be noted that both reach peak at NI in the

neighborhood of 1.3 amp-turns. In contrast, in Report 2 and Ref. 12,

*
For the same values of NE/RL, the computed D ws. NI curves in Report 2 and Ref. 12 are identical, but

the experimental curves are different due to difference in temperature tolerances.
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computed D approaches infinity, and the actual behavior could be explained
~only qualitatively. Infinite D resulted from the use of the model

P = &;{1 - (¢/¢s)2], which 1s invalid because the flux switching is
incomplete. When this model was later replaced by the model

¢ =31 = [2¢+ &, - ¢,)/(®, +¢,)1%}, Eqgs. (18) through (20),

peaking D vs. NI curves, similar to the ones in Fig. 26 but of higher
values, were obtained. The separation between é-a and %; done here has
resulted in a still better agreement (lower peaks). A still further
improvement would érobably result if the slow-switching component of

&i were added, because &; has an effect of increasing A¢4 and thus

decreasing D.

It should be emphasized that examining the validity of a
switching model by comparing experimental and computed D is a very
severe test 1f D is high (in which case Ap, is small). A slight error
in A¢4, which is negligible in the absolute sense, will have a large
effect on D. [On the other hand, in general, comparing A¢p is a less

severe test than comparing ¢(t)].

c. D vs. 14/13 WITH Nf/RL AND NI AS PARAMETERS

Let us examine the computed plots of D vs. l,/ly in Fig. 27.
For each load case, the plots corresponding to NI of 10 amp-turns and
of 100 amp-turns intersect. The values of l,/l; corresponding to the
intersection points increase from 1 to 2 as Nf/RL increases from zero
to 25. This phenomenon is quite complex and may be explained qualitatively
by examining two cases of l,/l; values, a large one (e.g.,5) and a small
one (e.g., 1). Since both Leg 3 and Leg 4 switch during the same switching
time T (cf. Fig. 24), the higher the ratio &;3/&;4 (or ép3/ép
A, = A,) is, the larger is Lp, /Dp, = D.

4+ Since

Consider the case of large l,/l;first. Because l, >> 1, and
because of the load on Leg 4, H3 >> E4 for either NI = 10 amp-turns or
NI = 100 amp-turns, where H designates a time average value of H(t).

As NI increases from 10 to 100 amp-turns, the ratio BP3/BP decreases

because of the nonlinearity in the Bp vs. H curve (H is as:umed smaller
than Hy; see Fig. 15, p. 38, in Report 2). Hence, as NI increases, D
decreases, which agrees wéth the results in Fig. 27. Note, however,
that the decrease in Bp3/Bp4 is counteracted by the load current which,

in comparison with the no-load case, lowers H.. This explains why, for
. P y
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a given value of l4/l3 in Fig. 27, the percentage decrease in D (as NI
increases from 10 amp-turns to 100 amp-turns) is smaller the higher the

value of NE/BL is.

In the case of L,/l, = 1, E3 > ﬁ4 only because of the load on
Leg 4. For the same load, therefore, H4 is higher than in the case of
a large l,/l,, and may exceed Hy if NI is high enough. Hence, as NI
increases from 10 amp-turns to 100 amp-turns, the effect of the nonlinearity
of ép vs. H on decreasing D is overcome by the effect of the loading current

on increasing D.

We see that, as NI increases, there are two opposing effects
on D: an increase in D due to the load current, and a decrease in D due
to the nonlinearity of ép(H)' If i/l = 1, the effect of the load cur—
rent predominates and D increases with N{. As l4/l3 is increased, H,
becomes smaller and the nonlinearity of BP(H) becomes more effective,
until beyond a certain value of 14/13, the latter overcomes the effect

of the load current and D decreases with NI.

Extrapolation of the intersection points of the curves corre-
sponding to 10 and 100 amp-turn indicates that for Core S (l,/l; = 1.83),
D decreases as NI increases if NZ/RL < 90. This is in agreement with the
plot of D vs. NI in Fig. 26 and the case of Ng/RL = 40 in Report 2,
Fig. 36(b) (p. 88), where D increases as NI increases above 3 amp-turns.
Note, however, that the experimental data 1in Fig. 26 show that D increases

with NI for a value of NZ/RL lower than 20.

7. SUMMARY

An analysis 1s presented for computing flux-division ratio, D, 1in
a saturable core having three legs: Legm, Leg 3, and Leg 4. Leg m 1s
driven by mmf NI, and Leg 4 is loaded by a resistance R, across N, turns.
The analysis is based on $1X equations: two mmf equations, one junction
equation (5¢ = 0), and three differential equations (¢ = éma + éi for
each leg). A numerical solution for ¢(t) and F(t) 1is obtained by incor- -
porating a transcendental solution for F, into a simple predictor-corrector
method. A computer program 1s provided for computing three types of
output: time variables, D vs. NI anda N%/Hl tor given 1, /1, and D vs.
l4/l3 and Ni/RL for given NI. Computed H(t) wavetforms for NI = 2.0 amp-
turns and D vs. NI for N}/R, =0, 1.000, 3.962, and 9.524 turns®/ohm are
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compared with experimental data from an ultrasonically cut ferrite core
‘(Core S, Report 2). The agreement between computed and experimental re-

sults 1s considerably better than the agreement in Report 2.

D. CONCLUSIONS

The complex nonlinearity of exact flux-switching functions makes it
impossible to complete the analysis of magnetic circuits algebraically.

Even if these functions are simplified, the amount of mathematical work

involved is very often a burden.  These two factors dictate the use of

numerical methods in order to analyze (and design) magnetic circuits.

Typically, the problem is to solve a set of simultaneous first-order
differential equations that include variables that must be solved for
transcendentally. For the transcendental solution of these variables,
Newton’s method (with a slight modification) has been found to be very
effective. The set of differential equations may be solved by a number of
well-known methods. 1In the case of the binary counter (which is not a
simple circuit), the results obtained by using a simple predictor-corrector
method are essentially the same as the results obtained by a more complex
and more exact method (Runge-Kutta and Adams); on the other hand, the com-
putation time using the simple method was much shorter. The simple method
has also yielded results that agree quite well with experimental data for
other types of magnetic circuits (unloaded core, loaded core, core-diode
shift register, and a loaded saturable three-leg core). We thus find the
simple predictor-corrector method to be accurate enough for the computational
analysis of magnetic circuits similar to the ones above and to be relatively

inexpensive.

The agreements between computed and experimental waveforms of current
and voltage in the circuits analyzed so far are encouraging. Future work

along this line includes the following areas:

(1) Computational analyses (including computer programs and
experimental verification) of additional, more compli-
cated magnetic circuilts.

(2) Computer programs for determination of core parameters
from experimental data.

(3) Computer programs for design of magnetic circuits.

(4) Application of on-line computers in analysis and
design of magnetic circuits.
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ITI VARIATIONS OF FLUX-SWITCHING PARAMETERS

A.  RAMP-F SWITCHING
1. INTrRoDUCTION

It was noted in Report 3 (pp. 35 and 129) that the peak switching
voltage of Core E-6 with a ramp-F drive was considerably lower than that
computed from the parabolic model using step-F parameters. An investi-
gation has been carried out to determine the extent of this effect as a
function of the slope, k, of the ramp F. This effect is probably closely
related to the effects of partial setting discussed in Report 3, but the

nature of the relationship is not yet understood.

The @(t) comparison in Report 3 [Fig. 11(a)] showed that the shape
of the &(t) waveform was accurately given by the model for a given slope
of F provided that several parameters were appropriately adjusted. The
problem 1is thus primarily one of determining the values of the switching
parameters as a function of k. One additional experimental check of the

shape of the ®(t) waveform will be given in Sec. III-A-4.

There are two motives for Pursuing this study: (1) to determine if
the parabolic model can be used for practical applications where a core
1s driven by an F(t) which is approximately ramp-shaped, and (2) to learn
more about the general effects of nonconstant F(t) switching so that,

eventually, a new model can be developed which will work for any F(t).

The investigation was carried out by measuring ép and t, for ramp-F
switching for a number of values of k& (the slope of the ramp). These
data were then compared to computed curves to determine if a new, differ-
ent, set of values of the switching parameters could be used in the model

for all values of k.

The experimental ép and t, data were plotted vs. k and compared to
curves computed from the parabolic model. Curves were computed 1in two
different ways: (1) using a simple version of the parabolic model and
solving for &P and t, algebraically, and (2) using the ¢, parabolic model
and the digital computer. The algebraic method proved useful as an

intuitive aid to understanding the results and also provided an accurate
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method for determining ramp-F corrected parameter values without resorting
to trial and error. These two methods of computing ép and t, will be dis-
cussed in Parts A-2 and A-3, respectively. Next, the experimental results
of Core E-6 will be briefly discussed. The results of introducing new pa-
rameter values into the computations will be discussed in Part A-5.
Finally, conclusions will be made in Part A-6. Experimental information
for two other cores will be given in Sec. 11I-B-4 where the effects of

temperature are treated.

9. ALGEBRAIC CALCULATION OF 'd)p AND t,

The values of ¢p and t, for ramp-F switching cannot be algebraically
calculated using the P, parabolic model. However, they can be algebrai-

cally calculated with the following version of the parabolic model:

¢2
= MF-FY[1-—) - (94)
¢2

Although this model is less accurate than the ¢d parabolic model, 1t 1s
sufficiently accurate to aid intuitively in understanding the phenomeno-

logical aspects of ramp-F switching.

It will be assumed for this calculation that the entire ¢p(F) curve
can be adequately described with one set of values for A\, Fjy and V. This
simplifies the calculation considerably and 1s qulte accurate for some
cores (e.g., Core E-6) in the range of F over which the experiments were
performed. The computer calculation of ¢p and t, is easily capable of
separating the &p(F) curve into two regions when it is necessary to do so.
The object now 1s to solve for ép and t as a function of k (the slope

of the applied ramp-F), A, F{ and v.

The @(t) function can be obtained from Eq. (94) by separation of

variables. Defining t, as the time when switching begins, 1i.e., b = -
at t = tg, and solving for @(t) results in

. "\v 2 h t " ' -1 ¢r

¢ = NF - Fy) sech é; (F - Fo)th - tanh &T . (95)

to




Substituting the ramp function

F =kt (96)

into the integral of Eq. (95) and using the relation ty = F;/k results in

t (kt _Fg)wfl
F - Fy)¥dt' =
J ( o) k(v + 1)

(97)

o

Using this integral in Eq. (95) gives us the desired %{¢) function,

, | MEe-FH¥T @
® - - "Ny ——— - —_
® = AMF = Fy)” sech PNTOREY tanh p , (98)

s

for ramp-F switching. The solution for t, 1s then obtained in the usual

way by setting d®/dt = 0. This gives the following transcendental function:

Nkt = Fy¥+! ¢ } vk
P -1 r s
= tanh * — =

kt = Fryv+l h
( p 0) tan ¢sk(V I 1) d) 2}\.

s

(99)

It turns out that the argument of the tanh function is usually very small

(e.g., <0.2) so that the approximation
tanh x = x (100)

can be used to simplify Eq. (99). This results in a quadratic equation

which can be solved for ktp, thus giving

\ kp (v + 1) cs fon 5 1/(v+1) . o)
t = —_—
P 2\ v+ 1 0
where
C = tanh™! —
P

s
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The function for ép can be obtained by letting t = t, and @ = ép in
Eq. (98), and using kt, from Eq. (101). We thereby obtain

(YRS

k(v + 1) il | KA 5
s vV
b, =x—-——2k C+ 02+V+1 sech? c? + -C

(102)

Note that F|, does not appear in Eq. (102). 1In Eq. (101) it appears
only as an added term. Thus, two cores which have identical parameters
and dimensions except fora difference in Fj will both give the same values
for &}. However, the peak of the large Fj core will occur later by an

amount 1/k (Fj - Fy

Olarge 0ema11)+ At low values of k this is not precisely

true because of the inaccuracies of this model. The FS term in Eq. (101),
if divided by -k, is equal to the time required for F to reach F, at which
time the core begins switching. The time from the onset of switching

until the peaking of ¢ , is independent of FS for this model.

The three parameters of primary interest in Egs. (101) and (102) are
k, N\, and Fj. 1If everything else is combined into the quantities A and B,

these equations can be written as

k 1/(v+1)
ktp - Fg = A(X) (103)
and
k v/{u+l)
&% = BK(X) . (104)

Equations (103) and (104) are plotted as a dashed line 1in Figs. 28 and 29.
These curves will be compared with computer calculated curves in Part A-3.
The curve is plotted as ktp vs. k rather than t, vs. k to remove the 1/k

dependence so that the remaining effects can be more easily judged.

If Ckt, - Fy) of Eq. (103) is plotted wvs. k on log-log paper, a
straight line results. The slope of this line 1is equal to 1/(v t 1).
Vertical displacement of the line corresponds to changes in A and the
coefficient A which contains v, ¢_, and tanh™! $,/P,. Likewise, Eq. (104)
gives a straight line on log-log paper. In this case, the slope is equal
to v/(v * 1), and vertical displacement of the line corresponds to changes

in A\ and the coefficient B which also contains v, ¢_ and tanh™! ¢r/¢s.
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The experimental data can be conveniently analyzed on log-log scales
because nearly straight lines are obtained. This makes for easier inter-
polation and simplifies the comparisons with results computed from a
model. Equations (103) and (104) will be used in Part A-5 to calculate
new values of A and Fy (e.g., A, and Fj_) which are applicable specifi-
cally for ramp-F switching.

3. NumMericAL COMPUTATION OF aJp AND t,

The &, parabolic model was used with the digital computer to compute
more accurate @p(k) and kté(k) curves than those obtained via the alge-
braic calculations just discussed. The ¢(t) was computed in the vicinity
of the maximum ¢ (e.g., —0.3p, < ¢ < +0.3p,) for each of a number of &k
values. The values of bp and ktp were then determined from the P(t) data

and values plotted vs. k. The computer program, which did not include
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any of the initial spike models,

of Report 3.

This model requires a function

that must be determined before

is discussed in some detail on pp.

The equation of this model which corresponds to Eq.

MF = F” 1 -

20+ @,

-,

b,

(see p.

are determined from the static ¢{F) curve.

Pa

this model can be used.

19 of Report 3) for b, (F).

tions for this purpose contain parameters (e.g., ¢,, ¢, H , H

ql n?

16-21
(94) 1s

(105)

Equa-

and Ha)

These parameters

Computation of ép(k) and k%(k) was made for Core E-6 using the same

step-F parameters as were used in the algebraic calculation above; only

one region in @p(F) was used.
in the linear graphs of Figs.

Figs. 30 and 31.

The results are plotted as a solid curve

28 and 29 and also on the log-log graphs of

Only one region in bp(F) was also used for Cores I-4
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FIiG. 31 (ktp-F(’)') vs. k FOR RAMP F USING A, AND Fg

and K-1 to be discussed in Part B-4 because the experimental bp(F) data
for step-F drive could be adequately described with only one region.
Two regions can easily be handled by the present computer program 1f

necessary.

A comparison of the bp(k) curve in Fig. 30 calculated from Eq. (102)
and the curve obtained using the computer reveals several interesting
points. The curve from the computer 1is curved downward for low values of
k, whereas the algebraic calculation results in a straight line. This
curvature is the result of ¢d being a function of F in the ¢d parabolic

model. The computer calculated curves were consistently lower for all
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values of k, although as & increased, the percentage difference decreased.
For Core E-6 at k& = 10, the difference is 4.3 percent; at k = 100, it is
1.2 percent.

4. EXPERIMENT

The equipment used for the ramp-I’ experiments was essentially the
same as that described in Sec. I-D-1. The transistor pulser, which con-
sisted of four current drivers in parallel, was modified to increase the
maximum rise time to about 50 usec. A capacitor decade was inserted in
the internal pulse-shaping circuit of each of these four drivers. This
also increased the fall time, but that is of little consequence if

switching is completed during the rise time.

The pulse sequence consisted of a positive SET pulse followed by a
negative CLEAR pulse, a positive CLEAR pulse, and a negative CLEAR pulse
(see p. 83 of Report 3 for details of this method of clearing). ‘'The nega-
tive CLEAR pulses were greater than 7 amp-turns for Cores E-6 and K-1,
and 15 amp-turns for Core I-4. The constant portion of the SET pulse
was kept short to minimize dissipation in the output transistors of the
pulser. A projected graticule was used on the oscilloscope so that pa-
rallax could be eliminated from the experiment. Core E-6 was used for
most of the ramp-F experiments. Cores I-4 and K-1 were tested with a

ramp-F drive at various temperatures (Sec. III-B-4).

The measurement of &p, t, and k is illustrated by Fig. 32. First,
the peak in ¢ was aligned with a vertical graticule line. Then, &} and
F_, were measured with a chopper and a voltage reference. Next, At and F

b
were measured. The value of k was calculated from

F, - F,
k= Tt (106)
and ktp from
kt, = F, . (107)

For all except the low values of k, the F(t) waveform had a nonlinearity
near its beginning. The above method of measurement was used so that &k
and t, would be determined from that portion of the ramp which existed
during most of the switching prior to the peak in #(t). The linearity
and slope of the ramp after the peak in ®(t) is of no concern since it

will not affect the determination of t, and &;.
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FIG. 32 DEFINITIONS OF MEASURED QUANTITIES
FOR RAMP-F SWITCHING

The comparison of the experimental and computed P(t) waveform was
done at a relatively low value of k (k = 0.837 amp-turn/usec) to comple-
ment rather than duplicate the comparison made in Report 3
(k = 3.57 amp-turn/usec). The experimental P(t) waveform and its corre-
sponding F(t) waveform are shown in Fig. 33. The numerically computed
$(t) waveform is also included so that the shape of the waveforms can be
compared. The values of Kr and Fgr used in the computation were determined
from the bp(k) and ktp(k) curves so that ép and t, would match the experi-
mental values at k=0.837. The values were ?\r =0.0507 and F'(') =(0.800 amp-turns.
Note that once A, and Fy, are correctly determined, very good agreement 1is
obtained. The problem is one of determining how well a single set of values

for A, and F%r lalso By e K., and %r if two regions are used for bp(F)] will
serve for all values of k.
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FIG. 33 EXPERIMENTAL vs. COMPUTED ¢(t1) FOR RAMP F WITH A, AND Far
ADJUSTED TO MAKE ¢, AND t, AGREE
Core: E—6; Temp. = 30°C; k = 0.837 amp-turn/usec; A, =0.049;
F %, = 0.80 amp-turn; v = 1.30
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Experimental ép(k) and ktp(k) points are included in Figs. 28 through 31.
»Note that the experimental ép(k) data are below the numerically calculated
curves (for stgp-F parameters) for all values of k. This is in agreement
with the one pdint observation on p. 35 of Report 3. Thus A needs to be

decreased for all values of k.

Note that the experimental %p(k) curve has a shape very similar to the
numerically computed curve, i.e., nearly a straight line on the log-log
plot but with a slight downward curvature at low values of k. It appears
that a vertical shift downward of the numerically computed curve would give
good agreement for the entire curve. This vertical shift is obtained by

varying A as indicated by Eq. (104).

Strangely enough, the ktp(k) experimental and computed curves are in
quite good agreement except for low values of k(e.g., k < 1). This good
agreement may be somewhat accidental, since a correction in A to give
agreement in bp(k) will throw the ktp(k) curve out of agreement. There-
fore, F; has to be corrected to bring ktp(k) back into agreement [cf.

Eqs. (103) and (104)]. This will be discussed in more detail in Part A-5.
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5. PARAMETER CORRECTIONS

The values of A and F| need to be corrected to make the computed
%p(k) and ktp(k) curves agree with experimental ramp-F data. The corrected
values can be calculated on the basis of Egs. (103) and (104) and from the

experimental and the numerically computed data. Define P as

ép computed [using the ¢, parabolic model]
P = . (108)

d% experimental

The value of (ép computed) can be computed using step-F parameters, or any
approximate values. Both values of bp must be at the same value of k.
Denote ramp-F corrected values by the subscript r. From the A relationship
of Eq. (104) we obtain

A
A= (109)
r prtl
where A is the value used in determining (¢p computed). To derive a cor-
responding equation for Fgr first solve Eq. (103) for F{ for ramp-F-
corrected parameters. This results in
1/(v+1)
Fi = okt - A(— (110)
r Pexp A
r
where t, is the experimental value. 4 is then also determined from
exp

Eq. (103) but using step-F values (or the approximate values) for

A and Fs,
A 1/(v+1l)
A = (ktp . —Fg)(;) (111)

where t, is the calculated value of t, Substituting this equation
ca c

into Eq. (110) and making use of Eq. (109) results in

Fgr = kt - P(kt - Fy) . (112)

Pexp Pcale
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Equations (109) and (112) were used to get the following ramp-F values
" for Core E-6 at k = 6 amp-turns/Usec:

A

r

0.0507

Fll

or 0.56 amp-turns

The numerically computed @p(k) and ktp(k) curves using this value of A

but the old value of Fy are included in Figs. 30 and 31. Note that the
ép(k) 1s in relatively good agreement for all k values, but that the
original agreement of the ktp(k) curve has now been ruined. To correct
this, F; must be decreased. The calculation was repeated using both A,

and Fy_. The bp(k) curve 1s included in Fig. 30. The kt;(F) curve has
been plotted in a new figure (Fig. 34) because the vertical axis contailns
Fy. The &}(k) curve has been altered primarily in the low-k region as a
result of the change in Fg. In this low-k region it has gone from slightly
above to slightly below the experimental data. Hence, decreasing Fg 1in-
creases the curvature of the &;(k) curve if the ¢d model is used. This
slight variation in curvature could be used to determine Fg very roughly.
However, a value thus determined would be larger than the value 0.56 which
1s required to make t, agree at k = 6 amp-turns/usec. The computed ktp(k)
curve (Fig. 34) now crosses the experimental curve at k = 6 where the value
of Fgr was determined. Unfortunately this ktp(k) curve cannot be made to
agree for all k values. If v is adjusted to make the ktp(k) curves agree
for all k values, which would require a significant change in v then the
agreement in the ép(k) curves would be ruined because of a change in the
slope of the computed curve. Thus, adjusting v would not help, but would

considerably complicate matters.

So far in this discussion, very little has been said about determining
ramp-F values for Py F,, and Fgp. In some cores the bp(F) curve may re-
quire use of these parameters. It was noted, in preliminary computations,
that a small deviation from the experimental %p(k) curves at high k values
could be traced to the inclusion of Py F, and Fg in the computer program.
A careful examination of the experimental %P(F) data for Core E-6 revealed
that the éP(F) curve was better described if Pp, F, and Fg were not intro-
duced. If the experimental data had been extended to higher F values,
perhaps Pps F, and Fg would have been necessary to properly describe the
@p(F) curve. It was therefore impossible to make experimental observations

on the effect of ramp-F switching on Py F, and Fg. It is possible,
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FIG. 34 (ktp - Fo,) vs. k FOR RAMP F USING A, AND Fj,

however, to make some reasonable assumptions that will allow a determina-
tion of ramp-F values for 0, F, and Fp (i.e., Pyps F,,, and Fg.) from
the values of A_and Fg . First, assume that the effect of ramp-F switch-

ing is to reduce the ordinate of the & (F) curve the same percentage for
, 2 g

all F values. Then o, will be reduced by the same factor as is A.
Therefore
>\r
Por = Py (113)
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Second, assume that the other effect of ramp-F switching is to shift the
entire &P(F) curve leftward. Then F0 and FB will be reduced by the same

value as Fj. Thus Fy,, and Fy_are given by

F,, = Fy, - (FS - FS') (114)
and
Fg = Fg - (F" - Fgr) . (115)

The equations of continuity of the ¢p(F) curve as given on pp. 17 and 18
of Report 3 are preserved by these assumptions. It should be emphasized

that Eqs. (113), (114), and (115) have no experimental verification.

The physical mechanisms responsible for the effects of ramp-F switch-
ing are not presently understood. They are probably closely related to
the effects of partial setting (cf. p. 129 of Report 3). It is not sur-
prising that good agreement cannot be obtained for all values of & by
adjusting only A and Fg. See, for example, the effects that partial
setting has on t, as observed in Figs. 34(a) and 35 of Report 3, and also
on the static ¢(F) curves as observed in Figs. 30 of Report 3. Similar
effects may also occur in ramp-F switching. This needs further

investigation.

In practical applications where F(t) can be approximated by a ramp,
it is certainly better to make an adjustment in the value of A and Fg
rather than ignore the effects of ramp-F switching altogether. If a new
value for Fg is dgtermined at a value of k in the middle of the range of
interest, quite good results should be obtained. The experimental deter-
mination of Kr and Fgr can be done with measurements at only a few k values
1f the results are plotted with log-log scales, since nearly straight

lines result.

When only ramp-F values of parameters are needed, the &p(F) measure-

ment can be eliminated and A Fy, and v determined directly from experi-

,
mental &%(k) and ktp(k) curves. First, a straight line is drawn tangent

to the log-log ép(k) curve at the high-k end. From the slope of this
straight line, v can be determined according to Eq. (104). Next, A can

be calculated from one point on this straight line by using Eq. (102).
Finally, Fg can be determined from an appropriate point of the experimental
ktp(k) data by using Eq. (101). These approximate values of A and F§ can

then be used to compute bp(k) and tp(k) using the ¢d parabolic model.
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These computed curves, together with Eqs. (109) and (112) can be used to

determine final values of A_ and Fy.-

6. SUMMARY

The parabolic switching model

2
P = A(F-F'())”l-%
é5

was used for ramp-F drive to derive equations for %p(k) and tp(k), where &k
is the slope of the ramp. It was shown that &p is independent of Fg for
this model. These equations are useful as an intuitive aid for analyzing
the experimental results, and in determining corrected values for A and Fy
for ramp-F switching. The numerical computation of ¢p(k), and tp(k) with
the ¢, parabolic model and a digital computer was discussed and the re-
sults compared to those obtained analytically with the simpler form of the
parabolic model given above. The values were nearly equal for high values
of k (e.g., @p values differed by 4.3 percent at k = 10 amp-turn/usec) but
differed considerably at low values of k. The details of the experimental
measurements were discussed and the &p(k) and tp(k) curves for Core E-6
were compared to the computed curves using step-F parameters. The experi-
mental ép(k) curve was significantly lower (e.g., 15 percent at

k = 1 amp-turn/usec), The experimental tp(k) curve was in close agreement
with the computed curve except for low values of k. The algebraic equa-
tions for %p(k) and tp(k) were used to derive simple relationships for
computing ramp-F corrected values for A and FS. These values were used in
the ¢, parabolic model to again compute ép(k) and tp(k). The bp(k) curves
were now in good agreement for all k values. The tp(k) curves were 1lnexact
agreement at only one k value, which is the point at which the two curves
crossed each other. The agreement in the vicinity of this crossing point

was good enough for many practical applications.

B. EFFECTS OF TEMPERATURE
1. INTRODUCTION

In a practical magnetic circuit, operation is influenced by variations
in temperature. Analysis of these circuits by use of a switching model

therefore requires a knowledge of the variation of the core parameters vs.
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temperature. It is also necessary to verify that the model which has been
used at room temperature is also valid for a wide temperature range. In
addition, it is helpful for qualitative studies of circuit operation to
know the general trends and approximate magnitude of the effects of varying

temperature.

The effects of temperature variations were determined by measuring the
core properties at each of several temperatures from -50°C to +75°C. First,
the static @(F) curves were measured, starting from both a hard remanent
state and a partially set state. Second, the ép(F) curve for step-F switch-
ing was measured at each temperature. Third, the ép(k) and ktp(k) curves
for ramp-F switching were measured at each temperature. The core parameters

were determined from these various curves and plotted vs. temperature.

These temperature effects wereAmeasured for two cores, Core I-4, and
Core K-1. The dimensions of these cores are given in Table II. Core I-4
is a thin ring which was ultrasonically cut from a disc of Indiana General 5209
ferrite. It is the same core used in Report 3 for studying the effects of
partial setting. The disc from which Core I-4 was cut was one of a batchof
10 discs which were magnetically tested for uniformity. Core K-1 is a
Lockheed 100SC1 switch core. It is from a group of six cores which were

magnetically tested for uniformity.

The temperature of the core was controlled by a commercial temperature
test chamber which used electrical heating and expansion of €O, for cooling.

The inaccuracy of the temperature is less than #1.5°C at all temperatures.

2. StAaTIiCc P(F)

The static @#(F) curves were measured starting from both a hard remanent
state and a partially set state for each temperature. The partially set
state was obtained by switching the core from ¢, to & = 0 by a l-usec
rectangular pulse. The static @(F) curve from this partially set state was

then measured for both a positive and a negative polarity of F.

The model for the static ¢(F) curves which we have been using (see
pp- 3-7 and pp. 74, 75 of Report 2) was fitted to each hard-state experi-
mental static ¢(F) curve. The values of the parameters thereby determined
were plotted vs. temperature. However, this ®(F) model! is not applicable

for partially set ¢(F) curves. An appropriate model has not yet been
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Table II

DIMENSIONS, SWITCHING PARAMETERS, AND TEMPERATURE COEFFICIENTS
OF CORES I-4 AND K-1

CORE 1-4 CORE K-1
Indiana General 5209 Lockheed 100SCl
Ultrasonically Cut Commercial
30 £ 0.5°C 24,6 0.5°C
DIMENSION
ro (mm) 3.78 1.27 (50 mils)
r, (um) 3.43 0.89 (35 mils)
ro/T, 1.10 1.43
b {mm) 0.848 0.76 (30 mils)
w (mm) 0.35 0.38
L, (um) 21.55 5.59
L, (nm) 23.77 7.9%
PARAMETER
¢, (maxwells) 5.97 6. 43
¢, (maxwells) 6.55 7.10
H, (amp-turns/meter) 230.0 200, 0
Hq (amp-turns/meter) 43.1 37.3
H, (amp-turns/meter) 37.0 31.4
A (ohm/turnl*lampy-l) 0.134 0.64
Ff (amp-turn) 1.28 0.35
v 1.19 1.21
A, (ohm/turn”*Lanp”™1) 0.119 0.477
TEMPERATURE COEFFICIENT
24, (1/°0) -0.0030 -0.0030
ay, (1/°0) -0.0025 -0.0035
ay, (1/°0) =0.0077 =0. 095
ay, (1/°C) ~0.0095 -0.0097
a (1/°0) -0.001 40,0017
ag! (1/°0) ~0.0084 -0.0065
a, (1/°0) +0.0008 -0.0002
o, (1/°0) -0.003 +0.001
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obtained for partially set states. Therefore, the effects of temperature

" upon these partially set ¢(F) curves will be Judged by looking at the

curves themselves.

The pulse sequence consisted of five rectangular pulses: a positive
PARTIAL-SET pulse, a positive or negative TEST pulse, a negative CLEAR
pulse, a positive CLEAR pulse, and finally another negative CLEAR pulse
(see p. 84 of Report 3). The width of the SET pulse was 6 msec. The
first CLEAR pulse followed closely the end of the SET pulse. The flux
switched by the PARTIAL-SET and the TEST pulses was measured at the time
of the first CLEAR pulse by means of a flux reference {see Appendix F of
Report 2). The peak flux, not remanent flux, was measured for all the
¢(F) curves of this report. The negative CLEAR pulses were greater than

15 amp-turns for Core I-4 and 7.0 amp-turns for Core K-1 (duration = 10 psec).

The general effects of temperature on the hard-state static ¢(F) 1is
shown in Fig. 35 for Core I-4 and Fig. 36 for Core K-1. It was found
that the &(F) model could be fit quite well for all the temperatures for

Core I-4 (e.g., less than 3 percent error except right at the threshold

o

¢ (maxwells)

|
N

F (amp-turns)

TB-5094-47

FIG. 35 STATIC ¢(F) CURVES vs. TEMPERATURE OF CORE |-4

109



8 I— —
ammm———
/K
X
B 4'1———'—‘—- _4
— X —.__17 x
6 :___——-’:_-—-::;! .

¢ (maxwells)
o
I
!-)‘\-x
——
\~,‘
\

-8 X amnennn XX —
| ! J ] | ] | ! | I |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 .2
F (amp-turns)
TB-5094-48
FIG. 36 STATIC ¢(F) CURVES vs. TEMPERATURE OF CORE K-1
where the experimental curve has a more rounded corner). The irregulari-

ties in the -50°C curve for Core I-4 are, of course, smoothed out in the
computed curve, but the percentage error due to these irregularities is
less than 3 percent. Experimental ¢E(F) data was not included in these
measurements. Therefore, H_ can only be very roughly determined by using
the portion of the ¢(F) curves between F =0and F = F,,. The value of H,
previously determined at room temperature was adequate for all temperatures
except —50°C for both cores. At -50°C H, had to be drastically increased
(e.g., from about 200 to 900 amp-turns) to prevent the computed curve from
rising above the experimental curve for 0 < F < F,,. This 1increase in H,
at lower temperatures means that the @(F) curves at ﬂ$r are flatter at
lower temperatures. This 1s qualitatively consistent with permeability
measurements which generally show an increase in permeability as temperature
increases and measurements of squareness ratio which decreases with an in-
crease in temperature. The increase in P, ¢$,, and F_ as temperature de-

creases are well known effects.
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The static @(F) curves of Core K-1 cannot be as well described by

- the model as those for Core I-4. The experimental @(F) curves have a

relatively steep section just above the threshold, which the computed
curve does not exhibit. Thus the computed curve has a lower F,, than
does the experimental curve. Perhaps the inner radius of this type of
core has a higher H threshold than the Parts of the core with larger
radius. The static ¢(F) model assumes uniform material properties
throughout the volume of the core. In practice, this problem is not
serious because the threshold in the switching model is determined by
Fy, which is generally above F,, anyway. In other respects these @(F)
curves were quite well descrlbed by the model. The worst error, not
including the threshold problem, is about 7.5 percent, and that is over

a very small range of F near F = (.21 amp-turns for the 75°C curve.

The values of Hq, H_, ¢r and ¢ are plotted in Figs. 37 and 38 for
Cores I-4 and K-1, respectively. These values were used in the computa-
tions of ¢ (k) for a ramp-F drive in Part B-4. Since these curves are
fairly llnear, a temperature coefficient can be used to correct the pa-
rameters for variations in temperature. The values of these temperature
coefficients were determined at 30°C and are given in Table II. These values

are the primary objective of these measurements. It appears as if H for

Core I-4 might go to zero at a temperature somewhat above 100°C but below
the Curie temperature. This is possible since H is merely the vertical
asymptote for the hyperbolic static B(H) curve. The ratio ¢r/¢s is nearly
constant at 0.90 for Core K-1, but for Core I-4 has a maximum of 0.92 at
about 30°C and a lower value above and below this temperature. At 75°C it
1s 0.86. The sharpness of the wing of the static B(H) curve can be Jjudged
by the ratio H /H which is > 1. For H /H near unity, a very sharp wing
1s obtained and the side of the B(H) curve is very steep. This is usually
a desirable characteristic. As H /H increases the wing becomes more
rounded and the side less steep. This H /H ratio is shown in Fig. 39.

It must be remembered that Core K-1 has a steep @(F) curve just above F,,
which is not properly described by the static @¢(F) model. Therefore

Core K-1 is actually a little better than indicated by the ratio H /H as
far as steepness is concerned. The core geometry has been accounted for
in determining H and H so that H and H are a measure of the average

material propert1es rather than the core properties.
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FIG. 37 STATIC ¢(F) PARAMETERS vs. TEMPERATURE FOR CORE 1-4
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FIG. 39 WING SHARPNESS OF STATIC ¢ (F) CURVES vs. TEMPERATURE

The static ¢(F) curves for partially set states were obtained with a
1-usec PARTIAL-SET pulse except for Core I-4 at —50°C. For this case,
the threshold had increased considerably and the current driver used for
partial setting was unable to switch the core to ¢ = 0 in 1 usec. There-
fore, the width had to be increased to 1.6 usec. In general, the ampli-
tude of the 1l-usec PARTIAL- SET pulse was adjusted so that the core would
be partially set from ¢ = ~¢_ to ¢ = 0. The static $(F) curve was obtained
for both +F and —F. The curve for —F will be shown in the first rather

than the fourth quadrant for easy comparison with the *F curves.

The static A(F) curves for +F and —F for various temperatures are
shown in Figs. 40 and 41, respectively for Core I-4 and in Figs. 42 and 43
for Core K-1. Qualitatively, the general character of these partially set
curves is preserved throughout the temperature range. Note that the wing
of each *F curve is more rounded than the threshold. This characteristic
is reversed for the —F curves, where the threshold is more rounded than the

wing. This property is enhanced for very slow partial setting. See, for
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FIG. 41 STATIC ¢(-F) vs. TEMPERATURE OF PARTIALLY-SET CORE |-4
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FIG. 42 STATIC (+F) vs. TEMPERATURE OF PARTIALLY-SET CORE K-1
PARTIAL—SET pulse = 1 psec

| | 1 | | I | | | |
8l J—
| A/A/ ]
6 s H
ﬁﬁﬁ/h—- A _l
— oD pet r
Ny A:f— i ]
o \:/ éo"]m.er -50° _
o
2 | /A /A —
A/A A/ /A/ ]
0 Lﬁ.‘f/‘f | | | | | | | ! ]
o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

—F (amp-turns)
TB-5094-55
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example, Figs. 30(c) and (d) on page 91 of Report 3. The physical reason
for this property can be explained as follows. During very slow partial
setting, the regions of the core which have a lower H_ switch rapidly and
higher H_regions switch more slowly. When switching is continued in the
case of a positive TEST pulse the remaining unswitched regions are mostly
of a high H_ which tends to give a relatively long extensive wing in the

@{(F) curve as all the high H_regions are finally switched at high F. 1In

contrast, when the F 1s negative (i.e., opposite in polarity to the
PARTIAL-SET pulse) the TEST pulse switches the partially set flux back
again to —® . Since this involves mostly the lower threshold regions a

relatively sharp wing is obtained because few of the higher threshold
regions had been partially set. This physical explanation is supported

by the fact that this property is most evident for very slow partial set-
ting. Fast partial setting switches all regions of the core nearly
equally, thereby reducing the differences between the +F and —-F curves of
@(F). A better comparison of the positive and negative partially set
curves and the major static @(F) curves can be made in Fig. 44 for Core I-4

and in Fig. 45 for Core K-1. These figures include curves for one high and
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FIG. 4 MAJOR AND PARTIALLY-SET STATIC &(F) OF CORE 1-4 AT 75° AND 0°C
PARTIAL=SET pulse = 1 psec
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FIG. 45 MAJOR AND PARTIALLY-SET STATIC &(F) OF CORE K-1 AT 75° AND -50°C
PARTIAL-SET pulse = 1 psec

one low temperature (75°C and 0°C for Core [-4 and 75°C and -50°C for

Core K-1). The 0°C curve was used rather than the —50°C curve for Core I-4
to avoid the one case in which a 1.6 psec-duration PARTIAL-SET pulse was
used. The effects of partial setting upon the static @(F) curves seems to

be very much the same for the entire temperature range.

3. STEP-F SWITCHING

The effects of temperature on step-F switching will be studied by
means of the @p(F) curves. The primary goal is to obtain temperature co-
efficients for A, Fg, and v. Experimental bp(F) data were measured for
Core I-4 and Core K-1 at each of several temperatures in the range -50°C
to +75°C. These data were used to determine A, Fg and ¥V versus tempera-
ture. No attempt was made to determine £y F, and Fy versus temperature

because these values cannot be accurately determined for the range of F used
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for the two cores tested. No ¢}(F) vs. temperature curves were taken for

partially set states. This should also be investigated in the future.

The pulse sequence consisted of a SET pulse followed by a negative
CLEAR pulse, a positive CLEAR pulse, and another negative CLEAR pulse.
This CLEAR pulse sequence is used to completely remove all history effects
(see p. 83 of HKeport 3). The SET pulse had a 60-nsec rise time (10% to
90% points) and a .naximum amplitude of 5 amp-turns. It was supplied by
four Digital Equipment Corp. Model 62 current drivers in parallel. The
negative clear pulses were greater than 15 amp-turns for Core I-4 and
7.0 amp-turns for Core K-1. The ép(F) and bp(k) data for Core I-4 at 30°C
were taken before the core had been cooled to -50°C. The other data were
taken afterward. Dropping the temperature to —50°C and returning to room
temperature seemed to alter the core's magnetic properties a small amount.
Thus the 30°C ép(F) and ¢p(k) curves are not completely consistent with the
rest of the data and have therefore been omitted. The exact cause of this
small effect has not been determined. The static @¢(F) curves at 30°C were

taken both before and after the first —50°C excursion.

The &P(F) curves for different temperatures are shown in Fig. 46 for
Core I-4 and in Fig. 47 for Core K-1. It is readily apparent in these
figures that the only major effect on éP(F) of increasing temperature is
the decrease in F;. The decrease in Fy is to be expected since it is com-
monly known that H decreases as temperature increases. This is illustrated
by the static ¢(F) curves of Figs. 35 and 36. The values of Fg, A, and v
were determined for each temperature by plotting the ¢P(F) data on log-log

paper. These values are shown vs. temperature in Fig. 48 for Core I-4 and

in Fig. 49 for Core K-1. Note that ¥ is nearly constant with temperature.
The value of A is also nearly constant for Core I-4, but increases somewhat
with temperature for Core K-1. The value of A depends upon a number of
physical quantities so that it is not surprising if its temperature be-
havior differs for different cores. If we compare the parabolic model to
the model of Menyuk and Goodenough,” then A will be determined by the fol-
lowing quantities: the viscous damping parameter 3, the square of the
saturation magnetization, Mg, the density of domain nucleations, and

<cos 6> which accounts for the statistical variation in the directions of

the easy axes of individual ferrite grains.
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4. RAMP-F SWITCHING

The switching properties of a core with ramp-F excitation have been
discussed in Sec. III-A for room temperature. It was shown that A needs
to be altered (lowered for Core E-6) from its step-F value in order that
&P(k) can be properly described by the parabolic model. It was also shown
that the experimental kt (k) curve has a somewhat lower slope than the com-
puted curve, so that exact agreement can only be obta1ned at one k value.
We now wish to determine what effect temperature variations have on these
properties. Cores I-4 and K-1 were both investigated over the temperature
range —-50°C to *75°C. The equipment and the experimental technique are as
described in Sec. III-A-4. The amplitude and duration of the CLEAR pulses
are given in Sec. III-B-2.
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The effects of temperature on ¢p(k) is shown in Fig. 50 for Core I-4
and in Fig. 51 for Core K-1. At first glance these curves seem to vary
haphazardly, but this is not actually the case. The general trend is for
the lowest temperature curve to be on top at high k values, and on the
bottom for low k values, so that each curve crosses all the others in going
from low-k to high-k values. The only exception is that the curves for
Core I-4 are not extended to low-enough k values for this crossing to be
completed. Equation (102) for #}(k) was derived by using the parabolic
model with no static ¢(F) limiting included [cf., Eq. (94) with Eq. (105)].
Equation (102) results in a straight line (see Fig. 30) when ¢p(k) is
plotted with log-log scales. The slope of this line was shown (see Fig. 30)
to be dependent only upon v. Thus, 1f ¥ is constant with temperature, as
it practically is in Core K-1 for step-F switching, parallel lines would
result so that no crossing would be obtained. However, if ¢d is introduced
into the model as shown in Eq. (105), then log ¢p(log k) curves downward at
low k values. This makes crossing of the curves possible even if ¥V is con-
stant with temperature. Curves of (k) using the ¢, parabolic model and

step-F parameters were computed for Core K-1. The resulting curves showed
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FIG. 50 gb.p(k) CURVES OF CORE |-4 vs. TEMPERATURE WITH RAMP F(t)

124




¢p(vo"s/'urn)

I TTT

0.5

I

|

I

0.2

|

0.1

0.05

T TTTT]

0.02 - -

0.0l Lol L1t S R
ool 002 0.05 o.i 0.2 05 [ 2 5 10 20

k{amp-turns/ usec)

TB-5094-63

FIG. 51 d;p(k) CURVES OF CORE K-1 vs. TEMPERATURE WITH RAMP F(1)

no tendency for crossing except for the —50°C curve which crossed all the
other three curves (i.e., for 24.6°, +50°, and +75°C). Therefore, most,
but not all, of the tendency for the experimental curves to cross is due
to the parameters (namely A and Fy) varying from their step-F values. It
was noted in Sec. IIT-A-5 that decreasing Fg increases the curvature in
the computed log-log plot of bp(k). Thus, the reduced Fg values, Fgr,
required for ramp-F switching will increase the tendency, for the bp(k)
curves to cross. The slight increase in v with temperature for Core I-4

makes the temperature variations more difficult to analyze.

The effects of temperature upon t, can be examined from log-log plqts
of kt, (k). These curves are shown in Figs. 52 and 53 for Core I-4 and K-1
respectively. The major change with temperature is seen to be a vertical
displacement. Examination of Eq. (101) or Eq. (103) shows that this can
be caused by variations in A, F;, v, ¢, and ®,. Only one of these pa-
rameters, Fg can be altered without much affecting the &%(k) curves.
Equation (102) for &% 1s independent of Fy. Thus, for ramp-F switching,

as for step-F switching, it is Fy which varies most significantly with
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temperature. This would be expected. However, there is still the problem
of getting the experimental and computed ktp(k) curves to agree for all

k values. This was discussed for Core-E-6 at room temperature in

Sec. III-A-5 (see Fig. 34). To illustrate this problem for Core K-1, a
computed curve is included in Fig. 53 for 75°C. It is shown as a dashed
line. The value of A for this curve was determined using Eq. (109). The
value of Fj as determined from Eq. (112) for k = 6 ‘is approximately

-0.24 amp-turns which seems unreasonable. Since a negative F;r seems un-
reasonable, a positive value equal to 1/2 Fg was used. This resulted in
good agreement for ¢P(k). Note, however, that the computed tp(k) curve in
Fig. 53 crosses the corresponding experimental curve at about k = 0.45.

The computed curve at k = 6 isconsiderably above the experimental curve.
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Thus Fj, would have to be reduced a lot more to give agreement at k = 6.

pcaICWhiCh
was computed by using A = 0.428 and Fy, = 0.11 gives the same negative

A new computation of F using Eq. (112) and the value of t

value, -0.24, previously determined. Thus it does seem to be necessary

to have a negative value of Fy, in order to have t —agree at k = 6. The
75°C curve for Core K-1 is the only one which resulted in a negative

value for F8r3 however, the values at 4+50°C and 24.6°C were also unreason-
ably low. This problem has not yet been resolved, but is probably closely
related to the general disagreement between the computed and experimental
tp(k) curves. This requires further investigation. Because of the problem
concerning tp(k) and Fgr, no meaningful plot of Fgr vs. temperature can be

given.

The value of A computed for Core I-4 at 75°C from Eq. (109) was
0.114; only slightly reduced from the step-F value of 0.121. Using this
value of A_ and Fy, = F, = 0.800 amp-turns to compute tp(k) gave very good
agreement with the experimental curve for 75°C. Thus Core I-4 behaves much
differently than Cores E-6 and K-1 in this respect. The agreement for
other temperatures was not as good as at 75°C, but much better than any of

the tp(k) curves for Core K-1.

Values of A were determined for each temperature for both Cores I-4
and K-1. This was done by using Eq. (109) and the values of @
t

pcalc and

, calccomputed from step-F parameters. These values of A were verified
by using them to compute d}(k) as discussed in Sec. III-A-3. Since F,
influences bp(k) only slightly, the values for F, were used for Core I-4
and the values 1/2 Fg were used for Core K-1. In all cases the computed
a%(k) was in good agreement with the experimental curves. These values of
A, are plotted vs. temperature in Fig. 54 for Core I-4 and Fig. 55 for
Core K-1. The step-F value of A is also plotted for comparison. The A_
for Core K-1 is much lower than A over the entire temperature range, as
was expected. The small number and the scatter of the data points makes
it impossible to say for sure whether A actually varies, as shown by the
smooth curve, or whether it is approximately constant with temperature.
About all we can assume is that the A _temperature coefficient is roughly

zero at room temperature.

The A  curve for Core I-4 is surprising in two respects. It is not
very much lower than A above 0°C and it is significantly larger than A at

-50°C. If there is any close relationship between the effects of ramp-F
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switching and the effects of partial setting, as has been assumed on the’
basis of other experiments, then the ramp-F switching properties of Core 1-4

certainly make this relationship difficult to understand.

It must be noted that the ratio of A_to A is much lower for Cores K-1
and J-1 (discussed in Report 3) than for Cores T1-4 and E-6. Cores K-1 and
J-1 have two things in common which are not common to Cores I-4 and E-6:
They are both Lockheed switch cores (Lockheed No. 100SCl and 145SC1 re-
spectively) and they both have a relatively large OD/ID ratio compared to
Cores I-4 and E-6. It cannot yet be stated whether either of these is

related to the lower Kr/A ratio for these cores than for Cores I-4 and E-6.

5. SUMMARY

The effects of temperature variations on the switching properties were
investigated experimentally over the range —50°C to t75°C. This was done
for static ¢(F) curves, ép(F) curves for step-F switching, and bp(k) and
tp(k) curves for ramp-F switching. The static ¢(F) curves were taken for

both hard remanent and partially set states.

The core parameters were determined from these data and plotted vs.
temperature. The parameters Hq, H , and F{, decreased very markedly with
temperature, as expected. The value of ¢ and ¢ decreased significantly
but not as much as Hq and H . The values of A and ¥V were not very much
altered by varying the temperature. Temperature coefficients are given 1in
Table II. Three families of experimental static ¢(F) curves with tempera-
ture as a parameter were given: (1) starting from —¢ ; (2) starting from
¢ = 0 with a positive F; and (3) starting from ¢ = 0 with a negative F.
The core was partially set with a l-usec retangular current pulse.

Families of ¢p(F), bp(k) and tp(k) were also included.

C. CONCLUSIONS

The flux-switching properties of square-loop ferrite cores, in re-
sponse to a ramp-F drive, have been investigated as a function of the
slope, k, of the ramp. Three cores were tested in the experiments. It

was found that the static ¢, parabolic model could adequately describe

the switching over a limited range of k, provided that A and Fy are
given new values A_ and Fj . Generally these values need to be lower
than A and Fj for step-F switching, but Core I-4 is an exception. There

is no need to alter the step-F value of v. Acomparison between experiment
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and computation for thin-ring Core E-6 showed that the shape of ¢(t)
computed by the model is accurate if appropriate values of A and Fy, are
used. The experimental and computed @p(k) curves could be made to agree
over the entire range of k studied (i.e., k = 0.1 to 10 amp-turns/usec)
by using an appropriate value of A. The computed bp(k) curve depends
upon Fg, only as a second-order effect. This second-order dependence is

a result of including ¢,(F) in the model.

The computed tp(k) curves exhibited a tendency to cross the experi-
mental curves. This crossing point can be fixed at any k value by appro-
priate adjustment of F,'. Thus, in a practical application, F;. should be
chosen to make tp(k) agree with experiment near the center of the range

of k values involved.

The determination of correct values for Ar and Fgr for a new core
requires that experimental measurements be made with a ramp-F drive.

However, only a few experimental points need to be taken.

The effects of temperature upon the switching properties have been
experimentally determined for two cores, thin-ring Core I-4 and Core K-1
(see Table II for information on these cores). The temperature range
~50°C to +75°C was investigated. In general, the properties changed with
temperature in only a quantitative way. The experiments indicate that
the parabolic model should be as useful at any temperature in this range

¢ ’

as it 1s at room temperature. The values of the parameters Hq, Hn, .

b, Fy, N\, v, and A, have been plotted us. temperature. The most sig-
nificant effect of increasing temperature is the decrease in the static
@®(F) parameters Hq and H , and in the threshold, F;, of the &p(F) curve.
The values of ¢, and ¢_ also decrease with temperature but less severely
than Hq, Hn, and Fg. The values of A and v are not strongly dependent
upon temperature. The small variation in A with increasing temperature
for Core I-4 was, if anything, downward. Core K-1, on the other hand,
exhibited a measurable increase in A with an increase in temperature

(about 0.16 percent per °C at 30°C).

The effects of temperature upon the static ¢(F) curves starting from
a partially set state are difficult to describe quantitatively, since we
do not yet have equations to describe these curves. The general shape,
relative to the major static ¢(F) curves, was largely unchanged with tem-
perature (see Figs. 44 and 45).
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The ¢ (k) curves for ramp-F switching were not very strongly 1in-
fluenced by changes in temperature. Presumably this is a result of ¢ (k)
being nearly independent of FS which is the major temperature-dependent

parameter.

The ¢, (k) curves are shifted downward by increasing temperature.
The shape is relatively unchanged in other aspects. This downward shift
is probably a result of the decrease in F with temperature, although the
tendency for the computed t, (k) curves to cross the experimental curves
is not yet understood. An addltlonal problem with t (k) showed up at
+50° and +75°C. This 1s the apparent negative, or very low positive,
value for Fgr. The fact that the OD/ID ratio of the core has not been
accounted for in the model [except for ¢,(F)] may be responsible for some
of this trouble. These problems with tp(k) and F; require further

investigation.

The ramp-F switching properties of Core I-4, in relation to step-F
switching properties, are different than for the other three cores which
have been tested (this includes Cores E-6, K-1 and a one-point check on
Core J-1 in Report 3). The relationship of parameter variations for
ramp-F switching and switching from a partially set state is not yet
understood; although, a close relationship must exist. Except for
Core I-4, N\ and F, are reduced from step-F values for both cases.

Core I-4, on the other hand, exhibited a large reduction in A for a
partially set state (see p. 113 of Report 3) but only a small reduction
for ramp-F switching (even an increase at -50°C). This relationship
appears to require rather extensive work before it can be clearly under-
stood. However, the presently used switching model can be used in many

practical applications where F(t) is approximately a ramp function.




APPENDIX A

COMPUTER PROGRAM FOR PROCEDURE ée(}‘,At,NV,éé)

Language: ALGOL 60.

. . ¥ .
Program Description: Computes $€ and ¢, for given values of F,

At and

NV (negligible value of $E below which &E is assumed to be zero).

Switching parameter € is global.

Identifiers:*

Identifier Symbol Identifier Symbol
DELT At PHIDOTE ¢,
EPS € PHIDOTEPRIME L
FDOT F PHIDTE b,
NV NV

Program:

REAL PROCEDURE PHIDOTE (FDOTe DELT» NVo PHIDOTEPRIME) }
COMMENT: THIS PROCEDURE COMPUTES PHIDOTE AND PHIDOTEPRIME VS. FDOT
AND DELT. PHIDOTE IS ASSUMED ZERO IF BELOW NV. THE PROCEDURE USES
GLOBAL PARAMETER EPS.3
VALUE FDOT. DELT» NVi
REAL FDOTe» DELT+ NVe PHIDOTEPRIMES
BEGIN REAL PHIDTES
PHIDTE ¢ EPS x FDOT:
PHIDOTE ¢ IF PHIDTE > NV THEN PHIDTE ELSE 03
PHIDOTEPRIME ¢ IF PHIDYTE > NV THEN EPS / DELT ELSE 03
END OF PHIDOTE:

*
Listed in alphabetic order.
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PHDOTEO1
PHDOTE 02
PHOOTEQ3
PHDOTEO4
PHDOTEQS
PHDOTED6
PHDOTEQ?7
PHDOTEQS
PHOOTE09
PHDOTE10
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APPENDIX B

COMPUTER PROGRAM FOR PROCEDURE ¢ (F, t,T,,®%)

Language: ALGOL 60

Program Description: Computes @1, T., and é; for given values of F and t.

Switching parameters AL, v., C, and F_, are global.

Identifiers:

Identifier Symbol Identifier Symbol
CI C, PHIDOTI éi

F F PHIDOTIPRIME é;

FDEX F_ PHIDTI él

FI F, T t

LAMBDAI A TI T,

NUI v,

Program:
REAL PROCEDURE PHIDOTI (Fe Tv TI» PHIDOTIPRIME)} PHDOTIO1L

COMMENT: THIS PROCEDURE COMPUTES PHIDOTI AND PHIDOTIPRIME VS. F¢ T PHDOTIO2
* AND TI. THE PROCEDURE USES GLOBAL PARAMETERS LAMBDAI, NUI. Cl.» PHDOTIO03

AND FI,.: PHDOTIOG
VALUE Fv T3 PHDOTIOS
REAL Fr T» TI+ PHIDOTIPRIME: PHDOT106
BEGIN REAL FDEXs» PHIDTI}S PHDOTIO07
FDEX ¢« F - FI3 PHDOTI108

IF TI # 0 THEN PHIDTI ¢ LAMBDAI x FDEX & NUI x EXP (T - T) x PHDOTIO09
FOEX / CI) ELSE PHDOTI1O
BEGIN PHIDTI « 04 PHDOTI11

IF FOEX > 0 THEN PHDOTIg2

BEGIN TI + T3 PHIDTI ¢ LAMBDAI X FDEX * NUI X EXP ((TI - T) PHDOTI13

x FDEX 7 CI) 3 PHDOTItG

END? PHDOTI1S

END; PHDOTI16
PHIDOTI « IF PHIDTI > 0.0010 x LAMBDAI x FDEX THEN PHIDTI ELSE PHDOTI1?

03 PHDOTI18
PHIDOTIPRIME ¢ IF PHIDTI > 0.,0010 x LAMBDAI X FDEX THEN PHIDTI PH4OTI1O

X (NUI / FDEX = (T = TI) / CI) ELSE 03 PHDOTI20
END PHIDOTIS PHDOTI21
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APPENDIX ¢

COMPUTER PROGRAM FOR PROCEDURE &_, (F,,5,,' )

Language: ALGOL 60

Program Description: Computes ¢.Q,<¢d, and é:a for given values of Fand ¢,
Switching parameters L, L, ., b, H_, Hq, H , A, Fg, Vs P, Fo,
FB’ F12, F,,, V, and V, are global.

Identifiers:

Identifier Symbol Identifier Symbol
F F PHI @
FB F, PHID ®,
Fo F, PHIDOTMA @,
FoPP Fy PHIDOTMAPRIME !
F12 F, PHIDOTP ¢,
F23 F, PHIDOTPPRIME ¢
HA H, PHIDPRIME @
HN H PHIR b
HQ H, PHIS @,
LAMBDA X ROP P,
LI L, V1 v,
Lo L, V2 v,
NU 1%

Program:

REAL PROCEDURE PHIDOTMA (Fy PHI+ PHID: PHIDOTMAPRIME)} PHDTMAO1

COMMENT: THIS PROCEDURE COMPUTES PHIDOTMAr» PHID» AND PHIDOTMAPRIME PHDTMAQ2
FOR GIVEN VALUES OF F AND PHI. GLOBAL CORE PARAMETERS ARE: LI»LO» PHDTMAQ3

PHIROPHISOHAvHQoHNoLAMBDA'FOPPoNUOROPOFO.FBOFIZ:FZB;VIOAND V2.3 PHDTMAQY
REAL Fo» PHI+ PHID¢ PHIDOTMAPRIME; PHDTMAQS
BEGIN REAL PHIDPRIME. PHIDOTPs PHIDOTPPRIME; PHDTMAQG
COMMENT: COMPUTE PHID AND PHIDPRIME VS, Fes PHDTMAQ?

IF F S F12 THEN PHDTMAODSB
BEGIN PHID ¢« V1 X F x LN ((F = HA x LO) / (F - HA x L])) = PHIR PHDTMAQO

H PHDTMA10
PHIDPRIME ¢ V1 x (LN ((F = HA x LO) / (F = HA x LI)) + F x { PHDTMAL §

1/ (F=HAXLO) =1/ (F=HA X LI))) PHDTMAL2

END; PHDTMAL3
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IF F12 < F AND F $ F23 THEN

BEGIN PHID ¢ v2 x (F / H@ -~ L] « Fx (1 / H
= HN 7/ H@) /7 (1 = HN x LI / F))) = PH
PHIDPRIME ¢ v2 x (1 / HQ + (1 /7 HN -

HN 7 H@) 7/ (F = HN x LI)) =
END#
IF F23 < F THEN

BEGINPHIvaax(LO-LI#Fx(l/HN-l/HG)xLN((F-
HN x LO) /7 (F = HN X LI))) - PHIR
PHIDPRIME ¢ v2 x (1 / HN = 1 / H
- HN X LI)) + F x HN X (Lo - LI 7 ((F =~

x LI)))
END3

COMMENT: COMPUTE PHIDOTP AND PHIDOTPPRIME VS. Foi

IF F s FOPP THEN

BEGIN PHIDOTP ¢ 0}
PHIDOTPPRIME ¢« O

END;:

IF FoPP < F AND F S FB THEN

BEGIN PHIDOTP ¢ LAMBDA x (F = FOPP) = NU}
PHIDOTPPRIME ¢ LAMBDA X NU X (F = FOPP) = (N

END:

1IF FB < F THEN

BEGIN PHIDOTP ¢ ROP x (F = FO) 3
PHIDOTPPRIME ¢ ROP

END3

COMMENT: COMPUTE PHIDOTMA AND PHIDOTMAPRIME,. !
PHIDOTMA ¢ IF PHID = PHI > 0.001 x PHIR THEN PHIDOTP x (
PHID)) * 2) ELSE 0}

PHIDOTMAPRIME ¢ IF PHID - PHI > 0.0010XPHIR THEN
+ PHIR = PHID) / (PHIR + PHID)) = 2) x PHIDOTPPR
x (2 x PHI + PHIR = PHID) X (PHI + PHIR) x PHIDPR

x PHI + PHIR = PHID) / (PHIR +

PHID) *= 3 ELSE 0 1}
END PHIDOTMAI
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N = 1 7/ HE) x LN (1

1 7 HQ) x (LN (F x (1 =
HN X LI /7 (F = HN x LI)))

) X (LN ((F = HN x LO) / (F
HN x LO) x (F = HN

(1 - ((2 x PHI
IME ¢+ 4 x PHIDOTPPHDTMAu4Y4
IME /7 (PHIR +

PHDTMALU
PHDTMALS
PHDTMA16
PHDTMAL?
PHDTMA18
PHDTMA19
PHDTMA20
PHDTMA21
PHDTMA22
PHDTMA23
PHOTMA24
PHDTMA25
PHDTMA26
PHDTMA27
PHDTMA28
PHDTMA29
PHDTMA 30
PHDTMA 31
PHDTMA32
PHDTMA33
PHDTMA 34
PHDTMA3S
PHDTMA36
PHDTMA3?
PHDTMA38
PHDTMA39
PHDTMA4LO
PHDTMA41
PHDTMA42
PHDTMA4L3

PHDTMA4S
PHDTMA46
PHDTMA47




APPENDIX D

COMPUTER PROGRAMS FOR ¢ ~ & +

= a

1. PROCEDURE $(F, ¢, ¢, &')

Language: ALGOL 60

Program Description: Computes @, ¢d’ and @' for given values of F and ¢.
Switching parameters li, lo, ¢r, b, H_, Hq, H ., X, Fg, Ve Py, F
and F_ are global.

0’

Identifiers:

(1) Analytical identifiers

Same as in Appendix C, except for PHIDOT (¢) and PHIDOTPRIME (¢").

(2) Auxiliary tdentifiers

Identi fier Description
DONE Boolean variable
OK Label
Program:
REAL PROCEDURE PHIDOT(F+PHI+PHID+PHIDOTPRIME) # PHIDOTO1
COMMENT: THIS PROCEDURE COMPUTES PHIDOT+ PHIDs AND PHIDOTPRIME PHIDOTQ2
FOR GIVEN VALUES OF F AND PHI. CORE PARAMETERSs» WHICH MUST BE PHIDOTOS
SUPPLIED FROM QUTSIDE THE PROCEDURE» ARE: PHIDOTO4
LI» LO» PHIRe PHIS: HAy» HQe HN, LAMBDA» FOPP» NUs ROPs» FOr FB PHIDOYO0S
REAL Fo PHIv PHID» PHIDOTPRIME} PHIDOTO6
BEGIN PHIDOTOY
REAL PHIDPRIME, PHIDOTP» PHIDOTPPRIME 3 PHIDOTOS
OWN REAL F12¢ F23» V1s V2 3 PHIDOTO09
LABEL 0K} PHIDOT10
OWN BOOLEAN DONE3} PHIDOT11
COMMENT: COMPUTE F12¢ F23¢ V1, AND V2 ONLY ONCE.} PHIDOT12
IF DONE THEN GO TO OKj} PHIDOT13
DONE ¢ TRUE} PHIDOT14
Fl12 ¢ HOXL]I 3 PHIDOT1S
F23 « HQXLO ¥ PHIDOT16
V1 ¢ (PHIS=PHIR)/((LO~LI)XHA)} PHIDOT17
V2 ¢ (PHIS+PHIR)XHQ/ ( (LO=LI)XHN)} PHIDOT18
0K PHIDOT19
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Lines PHDTMA07 through PHDTMA39
of
PROCEDURE ¢ (F,#,¢,,¢'), APPENDIX C

COMMENT: COMPUTE PHIDOT AND PHIDOTPRIME.} PHIDOTS?
PHIDOT ¢ IF PHID=PHI > 0+001XPHIR THEN PHIDOTPX(1=( (2XPHI+PHIS PHIDOTSS
~PHID)/ (PHIS+PHID))*»2) ELSE 01 PHIDOTS9
PHIDOTPRIME ¢ (1-((2KPHI*PHIS-PHID)/(PHIS*PHID))*Z)XPHIDOTPPR!ME PHIDOT60
OQXPHIDOIPX(ZXPHI+PHIS-PHID)X(PHI*PHIS’*PHIDPRIME/(PH!S*PHID)*3 PHIDOT61
END PHIDOT} PHIDOT62

9. PROCEDURE &(F, ¢, &', &%)

Language: ALGOL 60

Program Description: Computes $, ¢', and ¢* for given values of Fand ¢.

Switching parameters 1, 1, b, P, H, Hq, H, , A, Fy, v, Py Fy,
Fg, Fy, Fo, Vi and V, are global.

Identifiers:

Same as in Appendix C, except for PHIDOT (¢) and PHIDOTPRIME (p").

Program:
REAL PROCEDURE PHIDOT (Fs PHI, PHIDOTPRIME,» PHIDOTSTAR)} PHIDOTO1L
COMMENT: THIS PROCEDURE COMPUTES THE MAIN PHIDOT» PHIDOTPRIME AND PHIDOTO2
PHIDOTSTR FOR GIVEN VALUES OF F AND PH1. THE PROCEDURE USES THE PHIDOTO3
FOLLOWING GLOBAL PARAMETERS: LI+ LO¢ PHIR,» PHISe» HAs» HQ@e HNy» LAMBDA. PHIDOTOU
FOPPs NUs ROP» FO» FBy F12¢ F23¢ V1+AND vai PHIDOTOS
VALUE Fo PHII PHIDOTO06
REAL Fr PHI» PHIDOTPRIME,» PHIDOTSTARS PHIDOTO?
BEGIN REAL PHIDPRIME» PHID» PHIDOTP PHIDOTPPRIME} PHIDOTO8
Lines PHDTMAO7 through PHDTMA39
of
PROCEDURE <2>“(F,</>,¢d,<2>’), APPENDIX C
COMMENT: COMPUTE PHIDOT: PHIDOTPRIME AND PHIDOTSTAR.! PHIDOT41
PHIDOT ¢ IF PHID = PHI > 0,001 x PHIR THEN PHIDOTP x (1 - ((2 x PHIDOT42
PHI + PHIS = PHID) / (PHIS + PHID)) = 2) ELSE 0} PHIDOT43

PHIDOTPRIME ¢ IF PHID = PHI > 0.0010 X PHIR THEN (1 = ((2 x PHI ¢+ PHIDOTLY
PHIS = PHID) / (PHIS + PHID)) = 2) x PHIDOTPPRIME + & X PHIDOTP x ( PHIDOT4S

2 x PHI + PHIS = PHID) X (PHI + PHIS) x PHIDPRIME / (PHIS + PHID) PHIDOT46

* 3 ELSE O} PHIDOT4Y?
PHIDOTSTAR ¢ = & x PHIDOTP x (2 x PHI + PHIS = PHID) / (PHIS ¢ PHIDOT48
PHID) = 2} PHIDOT4S
END PHIDOT} PHIDOTS0
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APPENDIX E

COMPUTER PROGRAM FOR ., &., ¢__ AND ¢ OF UNLOADED CORE

Language: ALGOL 60

Program Description: Computes iD, ¢E, éi, ¢_a, @, Db, ¢, and Fversus t for

given core parameters and drive function.
Identifiers:

(1) Analytical identifiers

Identifier Symbol Identifier Symbol
CAPID I, ND N,
CI C, NU v
DELT At NUI v,
EPS € PHIC e

F F PHIC1 ¢n’l
FB fﬁ PHIC2 ¢n_2
FDOTC F PHIDC ?,
FI F, PHIDOTC o

Fo F, PHIDOTC1 ¢n_l
FoOI F,. PHIDOTEC ée
FOPP F, PHIDOTEPR .;
F12 F, PHIDOTIC @,
F23 F,, PHIDOTIPR @
HA H PHIDOTMAC 53"
HQ Hq PHIDOTMAPR é:a
HN H, PHIR b,
1D ip PHIS .
LAMBDA A ROP P,
LAMBDAI N, SP Sp
LI L, T t

LO 1 TAUS T
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Identifier

TF
TH

™
TR

T
T
TIC T.
t
T

Identifier Symbol
TS T,
U u
\'Al v,
V2 1%

(2) Auxiliary identifiers

Identifier

Al

A2

CIRCUITPARAMETERH
CIRCUI TPARAMETERL

CIRCUITPARAMETERS

CORENAME
COREPARAMETERH
COREPARAMETERL
COREPARAMETERS
COUNT

CTS

Co

DELPHIC

FSCALE
GUESS
K

LOOP

NV
OUTPUTFORMAT
OUTPUTHEADING
OUTPUTVARIABLES

Description
. . D 2
Abbreviation for Sp - — 1/t )
t

o 3 ID
Abbreviation for | — — -~ S /t
2 0t p "

Format for the list CIRCUITPARAMETERL.

List of drive parameters (I,, N, T , u, t,
and SP).

List of drive parameters (I ,, t _, Sp, At
and plot scales for t, F, ¢, and type) for
input-data cards. '

Name of core.

Format for the list COREPARAMETERL.

List of core parameters.

List of core parameters for input-data cards.
Index number of At.

Index number of iteration.

Puj=1)
.y~ ®o-1)
F scale (for plotting).

- ¢n(j=0r

Label of location where prediction 1is made.
Index number of At for plotting.

Label of location where iterative computation
begins.

Negligible value of P, -

Format for the list OUTPUTVARIABLES.

Format for output-column heading.

List of I‘eSUltS (t, iD’ C‘PE) C.ﬁ)ir (.ﬁma’ Q"Dy ¢>1 ¢d’
F, and j___).

max
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Identifier DescriEtion

P Boolean variable determining type of output
(for plotting).

PLOTE Label (for plotting).

PSCALE @ scale (for plotting).

QUIT Label of location where computation terminates.

QUITCKT Label of location where computation of given
circuit parameters terminates.

STARTCKT Label of location where computation for given
drive begins.

STARTCORE Label of location where computation for given
core begins.

SWITCHING Label of location where computation starts for
each Ag.

THETAS [¢n(j=5) - ¢n(j=4)]/[¢u(j=l) - ¢'n(j=0)]

TSCALE Time scale (for plotting).

Program:

ELASTIC AND INELASTIC INITIAL PHIDOT SPIKES OF AN UNLOADED CORE.
BEGIN

COMMENT: DECLARATION OF CORE PARAMETERS.}
ALPHA CORENAME;
REAL LIs LOe PHIRe PHISe HAs H@s» HN:» LAMBOA, FOPPs NUe» ROP» FOs FB
» Vie V2¢ F12» F23, EPSe LAMBDAI. NUI» CI¢ FOIls FI3
COMMENT: DECLARATION OF CIRCUIT PARAMETERS.?
REAL CAPIDe NDv TRe Ue TMe SPe TSe TAUS: THe TFr» Als A2}
COMMENT: DECLARATION OF VARIABLES.}?
REAL T, DELTe TICe IDs Fo FDOTC» PHIDOTC» PHIDOTC1s PHIDOTMAC,
PHIDOTECs PHIDOTIC,» PHIDOTMAPRe PHIDOTEPRes PHIDOTIPRe PHIC» PHIC1»
PHIC2¢+ DELPHIC: COy THETASe PHIDCS
COMMENT: DECLARATION OF MISCELLANEOUS.3:
REAL NVe TSCALEe FSCALEs PSCALE 3
INTEGER LINESs COUNT» CTSe K3
BOOLEAN P
LABEL STARTCOREs STARTCKTe SWITCHING» GUESSLOOP,QUITCKT,PLOTE.QUIT}
REAL ARRAY PHIDTA: QDTAe TIMEA [0 : 5001
COMMENT: DECLARATION OF FILEs LISTS: AND FORMATS.!
FILE CR 0 (2 10)3
FILE F1 1 (20 15)3
LIST COREPARAMETERS (CORENAME: LI+ LO» PHIRs PHISs HA» HQos HNo
LAMBDA, FOPP» NUes ROPe FOo FBe LAMBDAI» NUI» Cle FOI)3
LIST COREPARAMETERL (CORENAME:, LI X 183, LO X 183¢ PHIR X 108
PHIS x 108+ HA» H@s HNe LAMBDAs FOPPe NUs» ROP» FO» FBe EPS X 189¢
LAMBDAI» NUIe CI x 186+ FOI)3
LIST CIRCUITPARAMETERS (CAPID» TMoSPeDELT» TSCALE +FSCALE»PSCALEsP) $
;;ST CIRC?IYPARAHETERL (CAPIDs ND¢ TR X 186+ U X 1860 TM X 106¢

X 19-6)3
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LIST OUTPUTVARIABLES (T x 1@6+ IDv PHIDOTEC, PHIDOTICes PHIDOTMAC,

PHIDOTC: PHIC x 1@8, PHIDC x 1R8s Fo¢ CTS)} 332
FORMAT COREPARAMETERH ("CORE "¢ A6 X¢ “LIZ"s FB+3¢ X4¢ “LOZ"s 032
FBe3r X "PHIRS"e FBe3s X4 "PHISZ"¢ FB8e3s X4y "HAZ"r F8.3¢ X4¢ "HQ 033
=%y FBe30 Xbs "HN="+ F8e3 / X15¢ "LAMBDA="s F8¢Ss X4o "FOPP="s F8.3, 034
X&e ®NUZ"s FBe3+ X&o "ROP="y F8.3¢ Xle "FOZ"» FB8e3s Xio wEFB=", 035
FB.3 /7 X15s "EPS=", FBels "@=9", Xue "LAMBDAIZ"» FB85¢ X4» "NUI="» 036
FB.30 Xis "CIZ"s FBe3s "R=6"¢ Xo "FOI= "+ F8:3 /)} 037
FORMAT CIRCUITPARAMETERH ("DRIVE PARAMETERS"s X8¢ "CAPID="» FB8.ls 038
X4e "ND="s 120 Xte "TRZ"s F8e3s Xdo "U="s F6e2s "R6"r Xte "TMZ%, 039
FBe3s X4s "SP="» F6e20 "R6™ /)} 040
FORMAT OUTPUTHEADING (/ X6» "T"y Xi1r “ID"s XS "PHIDOTEC", X#s "PHI 041
DOTIC™, X4o "PHIDOTMAC®s Xie "PHIDOTC"» X8¢ "PHIC"s X7, “"PHIDC"+ X9» 042
wEw, X9y "CTS" /)3 043
FORMAT OUTPUTFORMAT (F9.3s F123¢ 4 F12.5¢ 2 F12.2¢ F12.3» 1100} o4l
COMMENT: DECLARATION OF PROCEDURES.} 045
PROCEDURE &, (F,At,NV,$.), APPENDIX A
PROCEDURE &, (F,t,T,,¢;), APPENDIX B
PROCEDURE &_(F,¢,¢,,®.,). APPENDIX C
REAL PROCEDURE TANH (X1)4 TANH0001
VALUE X1} TANH0002
REAL X1} TANH0003
BEGIN REAL Y} TANHOO004
Y ¢ EXP (X1 & X1)} TANH0005
TANH ¢ (Y = 1,0) / (Y + 1.0} TANH0006
END TANH} TANH0007
REAL PROCEDURE SECH (X)} SECHO0001
VALUE X} SECH0002
REAL X3 SECH0003
BEGIN REAL U} SECH0004
U ¢ EXP (X)) SECH0005
SECH ¢ 2/ (U + 1/ U SECH0006
END SECH} SECH0007
COMMENT: READ INPUT = DATA CARDS, COMPUTE CORE AND CIRCUIT 046
PARAMETERSs AND PRINT HEADING.} 047
STARTCORE ¢ READ (CRe /o COREPARAMETERS) [QUITJ 048
STARTCKT & READ (CRe /¢ CIRCUITPARAMETERS) [GUITCKTIS 049
V1 + (PHIS = PHIR) / ((LO = LI} x HA}} 050
V2 « (PHIS + PHIR) X HQ / ((LO = LI} x HN) 051
F12 « H@ x LI} 052
F23 « HQ x LOJ 053
EPS ¢ V1 X LN (LO / LI)} 054
NV « 0.001 x EPS % SP} 055
ND * 1i 056
TR ¢ 2 x TM} 057
U ¢ 2 x SP / CAPID} 058
Al + (5P = CAPID / TM) / TM % 2} 059
A2 + (1.5 x CAPID / TM = SP) / TM} 060
TS + 900 x DELT? 061
TAUS ¢ PHIR /7 (03 x ROP X ND x CAPID)! 062
WRITE (F1 [PAGED)} 063
WRITE (Fls COREPARAMETERH: COREPARAMETERL)! 064
WRITE (Fls CIRCUITPARAMETERH: CIRCUITPARAMETERL)} 065
WRITE (F1e OUTPUTHEADING)} 066
COMMENT: INITIALIZE VARIABLES AND PARAMETERS.! 067
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T « TIC « 03 068

ID « F ¢« 03 069
PHIC2 ¢ PHIC1 « PHIC ¢ PHIDC ¢ -PHIR 3 070
PHIDOTC1 ¢ PHIDOTC ¢ PHIDOTEC +PHIDOTIC ¢ PHIDOTMAC ¢ 03 071
LINES «10¢ 072
K «10% 073
COUNT « 03 074
WRITE(F1.OUTPUTFORMAT » OUTPUTVARIABLES) 3 07s
COMMENT: COMPUTE VARIABLES DURING SWITCHING TIME,? 076
SWITCHING: T ¢ T + DELTS 077
COUNT e COUNT + 13 078
ID « IF T< TM THEN T * 2 x (Al X T + A2) ELSE 079
CAPID x (1 + TANH (U x (T = TM))) 7/ 23 080
F « ND x ID3 081
FI « FOI x TANH (F/F01)3 082
FOOTC « IF T < TM THEN ND X T X (3 x A1 X T + 2 x A2} ELSE o83
CAPID X ND x U x SECH (U X (T - TM)) % 2 / 2% o84
CTS « 03 085
GUESS: PHIC ¢ PHIC2 + 2 x DELT x PHIDOTC1} 086
LOOP: CTS ¢ CTS + 13 o087
PHIDOTMAC « PHIDOTMA (Fs PHICs PHIDCe PHIDOTMAPR)} oas
PHIDOTEC + PHIDOTE (FDOTCe DELTs NVe PHIDOTEPR)S 089
PHIDOTIC ¢ PHIDOTI (F» T» TICs PHIDOTIPR)} ) 090
PHIDOTC « PHIDOTMAC + PHIDOTEC + PHIDOTIC} 091
DELPHIC « PHIC1 + DELT x (PHIDOTC + PHIDOTC1) / 2 = PHIC: 092
PHIC ¢ PHIC + DELPHIC} 093
IF CTS = 1 THEN CO ¢ DELPHIC} o094
IF CTS = S THEN 095
BEGIN THETAS « DELPHIC / CO3 096
IF 0.9 < ABS (THETAS) THEN GO TO GUESSS$ 097
DELPHIC <« 0O 098
END3 099
IF ABS (DELPHIC) > 0.001x PHIR x DELT / TAUS AND CTS # 6 THEN 60 100
TO LOOP: 101
PHIC2 « PHICL: 102
PHIC1 ¢ PHIC: 103
PHIDOTC1 <« PHIDOTC; 104
COMMENT: PRINT OUTPUT.: 105
IF P THEN K « IF T < TR THEN 2 ELSE 10 106
IF COUNT MOD K = g THEN 107
BEGIN 108
IF LINES MOD 50 = 0 THEN 109
BEGIN WRITE (F1 C[PAGE]): 110
WRITE (F1l, OUTPUTHEADING) 112
END3 112
WRITE (F1e. OUTPUTFORMAT, OQUTPUTVARIABLES)} 113
LINES ¢ LINES + 1 114
END3 115
IF T £ TS THEN GO TO SWITCHING 3 116
60 TO STARTCKT 117
QUITCKY ¢ CLOSE (CRe SAVE): 118
GO TO STARTCORE?# 119
QUIT: 120
END, 121

A sample of input data:

"E~-6 T 22.190-37 23,540-3¢ 3.450-8¢ 3.7260=8¢ 310.0¢ 35.0¢ 30.00
00069¢ 0695¢ 1.30s 0e1132s 1.45¢ 3¢12¢0¢0120001¢30000.2450=6¢0.5500»
0.60¢r 0.05920-6¢ 10+150600,4R=9, 25060 S¢ 400¢ O
0.60¢ 0.05920-6¢ 10.,1586¢20-9, S86¢ Se 4000 1

145




APPENDIX F

COMPUTER PROGRAM FOR LOADED CORE

Language: ALGOL 60

Program Description: Computes i

.
D’ ®, b, ¢d, F, g, and Vd versus t for
given core, circuit, and drive paramet

Identifiers:

(1) Analytical identifiers

Identifier Symbol Identifier Symbol
C c NU v
CAPID 1, PHIC ¢
DELQD Ag PHIC1 b1
DELT At PHIC2 ¢, _,
DPHDTDFC @' PHIDC ¢,
ED e, PHIDOTC ¢

EK E, PHIDOTCI ®.
F F PHIR b,
FB F, PHIS P,
FJ faiin Q q
FJPR oo a1 9.
FO F, QD q
FOPP F; QD1 9.,
HA H, QD2 9,.,
HN H QDD g

HQ H, QDD1 i,
ID i R R

10 I, RD R,

L L RL R,
LAMBDA A ROP e,
LI L, T t

LO L TAUS T,
NC N, TR T,
ND N,
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(2) Auxtliary identifiers

Identifier

CIRCUITPARAMETERH
CIRCUITPARAMETERL

CIRCUITPARAMETERS

CORENAME
COREPARAMETERH
COREPARAMETERL

COREPARAMETERS

COUNT
CTS
GUESS

LINES
LOOP

OUTPUTFORMAT
OUTPUTHEADING
OUTPUTVARIABLES

P

Pl
QUIT
S
START

SWITCHING

XSCALE

YSCALE
ZSCALE

Description

Format for the list CIRCUITPARAMETERL.

List of circult parameters (Nc, R, , L, C, R,, I,
E,, I,, Ny, and T ).

List of circult parameters (same as above) for
input-data cards.

Core name, e.g. J-1.

Format for the list COREPARAMETERL.
List of core parameters (Core name, [ ,, I _, b, P,
H_, Hq, H, N\ Fg, v, Py Fy, and Fp).

List of core parameters (same as above) for
input-data cards.

Index number of nth At during switching.

Index number of jth iteration for each nth At.
Label of location where initial approximation of
¢ is made for each nth At.

Index number of automatically plotted set of
output.

Index number of printed line

Label of location from where iterative computation
is repeated for each nth At.

Format for the list OUTPUTVARIABLES.

Format for output column heading.

List of results (t, 1, b, ¢, Py F, q, ey +q R,

Jmax)'
l/qj 1f éj # 0, zero otherwise.
1/((}]._1 - én-l) if éj—l # én_l, zero otherwise.

Label of location where computation terminates

1/C if C is finite, zero otherwise.

Label of location where computation starts for
given core and circult parameters.

Label of location where computation starts for

each nth At.

Time scale, used in automatic plotting of resulting
waveforms.

¢ scale, used in automatic plotting of d(t).

g scale, used in automatic plotting of q(t).
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Program:

LOADED CORE 001
BEGIN COMMENT: DECLARE CORE PARAMETERS, CIRCUIT PARAMETERS: VARIABLES 002
¢ AND AUXILIARY IDENTIFIERS,? 003
REAL LI+ LO¢ PHIRe PHISe» HA» HQs» HNe LAMBDA,» FOPP» NUe ROPe FOe FB 004
H 005
REAL RLe Le Co RDs I0» TRe CAPIDy» EKe TAUSe R» Se Pe P12 006
REAL Yo DELTe PHICy» PHIC1le PHIC2, PHIDOTC» PHIDOTCie IDe Fr Q¢ Q¢ 007
QDs QD1» QD2+ QDD» QDD1s DELGDs PHIDC. DPHDTDFC» DEPHIDOTC: DEQDs 008
EDy» FJe FJPRe XSCALEer YSCALE, ZSCALEs 69 613 009
INTEGER LINESe CTSe COUNTs» NCo» NDv» K3 010
ALPHA CORENAME; 011
LABEL STARTe SWITCHINGs GUESS» LOOP. QUITS 012
COMMENT: DECLARE INPUT / OUTPUT.: 013
FILE IN CR 0(2, 10)3 014
FILE OUT F1 4(2, 15)3 01S%
LIST COREPARAMETERS(CORENAMEs LI+ LO» PHIRs PHISe HAy» HQe» HNe» 016
LAMBDA,» FOPP» NUe ROP» FO» FB)3 017
LIST COREPARAMETERL (CORENAME, LI x 183+ LO x 183¢ PHIR X 128+ PHIS 018
x 188+ HA» HGe HNe LAMBDA:» FOPPe NU» ROPe FOe» FB)$ 019
LIST CIRCUITPARAMETERS(NC: RL+ Lo Co RD» I0» EKe CAPIDe NDs TR)$ 020
LIST CIRCUITPARAMETERL(NCs RLe L Xx 106¢ C x 1086¢ RDe I0 x 1069 EK» 021
CAPIDe ND¢ TR x 186)3 022
LIST OUTPUTVARIABLES(T X 186+ IDs PHIDOTCe PHIC X 188+ PHIDC x 108 023
‘¢ Fo QDo ED + QD X RDes CTS)} 024
FORMAT COREPARAMETERH("™CORE "¢ AGe¢ X&4» "LI=", FBe3r XGo "LO=", 025
F8e¢3¢ XUo "PHIR="¢ FB8.3¢ XGo¢ "PHIS=", FB8e30 Xle "HA="0» FB8e30 Xio 026
"HQ="¢ FB8e3¢ Xdr "HN="» FBe3 /7 X15¢ "LAMBDA=", F8e¢5¢ X4» "FOPP=", 027
FBe30 XlUe "NU="» FB8¢3¢ X4o “ROP="y FB8.3¢ X&v "FO=", F8e30 Xb&o 028
“FB="¢ F8e¢3 /)3 029
FORMAT CIRCUITPARAMETERH("CIRCUIT"™,» X8¢ "NC=", I2¢ X4e¢ "RL="¢ FB8.3 030
¢ Xbe "L=%s FBe3¢ XUo "C="y FBe3r XG4» "RD="y F8e30 Xdo "I10="» F8.3 031
¢ X&o "EK="s FBe.5 / "PARAMETERS™e XS¢ "CAPID=", F8e3¢ Xao "ND=%, 032
12y X4o "TR="s FB8e¢3 /) 033
FORMAT OUTPUTHEADING(/ X6¢ "T"» X1le "ID"» X7¢ "PHIDOTC™» X7¢ 034
"PHIC®s» X7y "PHIDC®"» X9¢ "F%™s X11s» "QD"¢ X10¢ "VD", X9» "CTS" /)} 03s
FORMAT OUTPUTFORMAT(F9,3¢ 2 F12.3¢ 2 F12.2¢ 3 F12+3¢ 110)} 036
COMMENT: PROCEDURES USED BY THIS PROGRAM ARE MIN. MAXe AND PHIDOT. 037
H 038
REAL PROCEDURE MIN(AB)} MIN 01
VALUE A+B3 REAL ArB3 MIN 02
BEGIN MIN ¢ IF A < B THEN A ELSE B END MIN 1} MIN 03
REAL PROCEDURE MAX(A¢B)$ MAX 01
VALUE A¢B} REAL AsB} MAX 02
BEGIN MAX ¢ IF A > B THEN A ELSE B END MAX 3 MAX 03

PROCEDURE &(F,¢,¢,,¢'), APPENDIX D-1

COMMENT: READ INPUT = DATA CARDS AND PRINT HEADINGS.} 039
READ(CRs /» COREPARAMETERS) 040
START: READ(CR» /¢ CIRCUITPARAMETERS)CQUITI 041
WRITE(F1LPAGE )} 042
WRITE(F1s COREPARAMETERHs COREPARAMETERL)} 043
WRITE(F1s CIRCUITPARAMETERHe CIRCUITPARAMETERL)} 044
WRITE(F1» OUTPUTHEADING)} 045

149




LINES ¢ 6} 046
COUNT « 03 047
K ¢ 03 048
COMMENT: INITIALIZE VARIABLES AND PARAMETERS+ } 049
PHIC2 ¢ PHICL ¢ = PHIR!} 050
QD2 ¢ GD1 ¢« QDD1 ¢ Q1 ¢ PHIDOTC1 ¢ 03 051
G ¢ IF C < 1910 THEN § /7 C ELSE 0} 052
R ¢ RL + RD? 053
TAUS ¢ IF TR S 18=7 THEN 2 x PHIR /(0.3 X ROP X(ND x CAPID = FOPP) o054
) ELSE SGRT(PHIR X TR /(0.15 x ROP X ND X CAPID))?} 055
DELT ¢ TAUS / 2003 056
T ¢« TR X FOPP /(ND x CAPID)} 0%7
COMMENT: COMPUTE VARIABLES DURING SWITCHING TIME.? 058
SWITCHING: T « T + DELTH 059
COUNT ¢ COUNT + 13 060
10 ¢ CAPID X MIN(T / TRe 1)1 061
CTS « 0} 062
GUESS: PHIC ¢ PHIC2 + 2 x DELT x PHIDOTCL!? 063
GD ¢ QD2 + 2 x DELT x QDD1} o064
IF 10 < 1910 THEN QD ¢ MAX(QD 0)} 065
G ¢ Q1 ¢ DELT x(QD + QD1) / 2} 066
LOOP: G1 ¢ G 067
CTS ¢« CTS + 1 068
F « ND x ID = NC x @D} 069
DEPHIDOTC ¢ PHIDOT(Fe PHIC, PHIDC» DPHOTDFC) = PHIDOTC} 070
PHIDOTC ¢ PHIDOTC + DEPHIDOTC? . 071
PHIC ¢ PHIC1 + DELT X(PHIDOTC + PHIDOTCY) / 23 072
ED ¢ EK x LN(GD 7/ I0 + 1)} 073
IF L # 0 THEN o074
BEGIN QDD ¢(NC x PHIDOTC = @ / C = R X QD - ED) /7 LI 07%
DEGD ¢ QD1 + DELT x(GDD ¢ QDD1) /7 2 =~ QD# 076
END? oY
IF L = 0 THEN 078
BEGIN QDD «(GD - QD1) / DELT} 079
FJ ¢« Rx QD + ED + S X @ = NC X PHIDOTC} 080

IF QDD # 0 THEN P ¢« 1 / QOO ELSE P ¢ 0O} 081
FJPR ¢ R + EK 7(GD + I0) + S x QD X DELT 7 2 + DPHDTDFC x NC # 082

2 083
DEQD ¢ = FJ /7 FJPR} 084
END? 085S
QD ¢ QD + DEGD} 086
IF 10 < 1910 THEN QD ¢ MAX(QDe 0)} 087
G+ RXGQD +ED+Sx@a+ L xQb0 - NC x PHIDOTC} 088
IF SIGN(G) % SIGN(G1) THEN 089
BEGIN QD ¢ QD -~ 0,5 x DEQD} 090
G ¢ G = 0.5 X DEGD x R} 091
END3 092
Q@ ¢« Q1 + DELT x(QD + @D1) / 2} 093
1F (ABS(DEGD) > 0,001 x @D AND CTS < 10) THEN GO TO LOOP} o094
PHIC2 « PHICL? 09S
PHIC1 ¢ PHIC} 096
PHIDOTC1 ¢ PHIDOTC: 097
QD2 « QD1} 098
QD1 « QD} 099
Ql ¢ Q) 100
QDD1 ¢ QDD : 104
COMMENT PRINT OUTPUT 3 102
IF COUNT MOD 20 = 0 THEN 103
BEGIN IF LINES MOD SO = O THEN 104
BEGIN WRITE(F1LPAGED)} 10%
WRITE(F1es OUTPUTHEADING) 106

END} 107
WRITE(F1» OUTPUTFORMAT OUTPUTVARIABLES)? 108
LINES ¢ LINES ¢+ 1 109
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END3

IF PHIDOTC # 0 THEN 60 TO SWITCHING:
60 TO STARTS
QUIT: END.

A sample of input data:

“Je=1 '07.189'3011.580-3031009-8r33.480-802500002600'2205001.640
002701.“3'2.2700055!10200

2¢1:580¢1.008-601+00082000.0001,08200000000¢1¢58¢1¢0¢108=6¢
2000131¢04380-60042530-6¢0.00+1,0820¢0.000002.2801+0¢108=6¢
200.13100.389‘600.2530-6v0.7“02.79—6o0.083301-8001000109°6o

151

110
111
112
113

S==RL
S==RLC
S=-RLCD



APPENDIX G

COMPUTER PROGRAM FOR CORE-DIODE- TRANSISTOR BINARY COUNTER
USING A SIMPLE METHOD OF SOLUTION

Language: ALGOL 60

Program Description: Computes .ot Fpooep, $1, F,, ¢,, éz, 1.V,

éel, and ¢€2versus t.
Identifiers:

(1) Analytical identifiers

Identifier Symbol Identifier Symbol
CAPIS - I GJ E())
D D GJIM1 €i-1)
DELID i, GPRID %/
DELIS i GPRIS 9/ 31 _
DELT At HA H,
EK E, HN H_
EPS € HQ H
FB F, IC I,
FJ s ID i,
FIM1 fi-n IDM1 Lgi-1)
FPRID of/di , IDM2 i y(=9)
FPRIS of/di IL i,
FO F, ILDOT di,/dt
FOPP F ILDOTM1 di /dt _,,
F1 F, ILM1 1y (=1
F1DOT F, ILM2 i (-9
FIM1 Fii-1 IS i,
F2 F, ISM1 =1y
F2DOT F, ISM2 (=2
F2M1 Fyiot) 10 I,
F12 F, L L
F23 Fy LAMBDA A
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Identifier Symbol Identifier Symbol

LI L, PHIR ¢,
Lo L, PHIS b,
NBl1 Ng, PHI1 ¢,
NB2 N g, PHI 1M1 -1
NS1 N, PHI 1M2 1 -2)
NS2 N, PHI2 b,
NU v PHI2M1 ®y(-1)
PHIDOTE1 b1 PHI2M2 by(-2)
PHIDOTE2 be s RD R,
PHIDOTEPR1 be | ROP e,
PHIDOTEPR2 be R1 R,
PHIDOTMAL ¢ R2 R,
PHIDOTMA2 b, R3 R,
PHIDOTMAPR1 ' R4 R,
PHIDOTMAPR2 ', T t
PHIDOTPRL d! TAUS T,
PHIDOTPR2 b TIN T,
PHIDOTSTR1 d* TI1 T,
PHIDOTSTR2 @ TI2 T,
PHIDOT1 @, TR T,
PHIDOTIML b1 1) \ 14
PHIDOT2 - b, VD vV,
PHIDOT2ML1 by 1) 2! vV,
PHIMA1 b, a1 \& v,
PHIMA2 b, 00

(2) Auxiliary identifiers

Identifier Description

CF Number of convergence failures.

CORE Core name.

COUNT Index number of At.

CTS Index of jth iteration.

EXIT Label of location where computatlon terminates.
FMT1 Format for the list LISTL.

FMT2 Format for the list LIST2.

FMT3 Format for the list LIST3.

FMT4 Format for output-column heading.
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Identifier Description

GUESS Label location where predictions are made.

LINES Index number of printed line.

LIST1 List of core parameters.

LIST2 _ List of circuit parameters.

LIST3 List of results (¢, i,, i, F,, ¢,, &, F,
Par Par 1y, Vi @err ey Jmaxr CF).

LOOP Label of location where iterative computation
begins.

NV Negligibie value of és.

SWITCHING Label of location where computation starts

for each At.

Program:

BINARY COUNTER,» USING SIMPLE INTEGRATION METHOD TO COMPUTE CURRENTS AND
VOLTAGES VS. TIME.

BEGIN

COMMENT: DECLARATION OF CORE PARAMETERS.}

ALPHA CORE3}

REAL LI+ LO» PHIRe PHISe HA» HQe HNe FOPP, FB, FOe ROPe NUs LAMBDA,
F12¢ F23¢ V1e V2¢ EPS 3

COMMENT: DECLARATION OF CIRCUIT PARAMETERS.$

REAL R1le R2¢ R3¢ R4e Lo NS1e NS2s NBle NB2» EKe I0s RD» TRy ICe Vo
CAPIS, TAUS:

COMMENT: DECLARATION OF VARIABLES.:

REAL T» DELTe TI1s TI2e ILe ILM1» ILM2, IS, ISM1, ISM2s IDe IDM1s
IDM2+ VDo ILDOTs ILDOTMie F1ls FiM1, F2, F2M1le F1DOT, F2DOTs PHIDOT1,»
PHIDOTMALl, PHIDOT1M1e PHIDOT2» PHIDOTMA2.

PHIDOTEles PHIDOTEPR1e PHIDOTE2s PHIDOTEPR2.

PHIDOT2M1, PHIDOTPR1e¢ PHIDOTMAPR1,» PHIDOTSTRI1, PHIDOTPR2,

PHIDOTMAPR2, PHIDOTSTR2s PHI1le PHIMAL,PHIIM1s

PHI1M2¢» PHI2¢ PHIMA2e PHI2M1e PHI2M2s FJr FUM1, FPRIS» FPRID¢

GJe GJML1» GPRIS¢ GPRID» Ds» DELIDs DELISH

COMMENT: MISCELLANEOUS DECLARATIONS.}

REAL TINe NV 3

INTEGER LINESs, COUNT» CTS» CF}

LABEL SWITCHINGs GUESSs LOOPe EXITS

COMMENT: DECLARATION OF FILE.OUTPUT LISTS AND FORMATS,.}

FILE OWT 4 (2, 15)3

LIST LIST1 (COREs, LI x 183¢ LO X 103s PHIR X 188¢ PHIS X 188+ HAvr HG»
HNe LAMBDA» FOPP¢ NUe¢ ROPr FOy FBe» EPSX109)3

LIST LIST2 (R1s R2¢ R3¢ R4s L X 103» NS1ls NS2, NB1», NB2, EK» IO X 186

¢ RDv ICe V)3

LIST LIST3 (T x 106+ ILe ISe Fle PHI1 X 108, PHIDOT1,» F2¢ PHI2 x 108
PHIDOT2¢ IDs VDe PHIDOTELs PHIDOTE2s CTSe CF)}

FORMAT FMT1 (X1¢ "CORE™, ATe Xto "LICMMI="¢ F8e3¢ Xl4o "LO(MM)=", F8.3

* X&o "PHIR(MAXWELLS)="» F8¢3s X&4o¢ "PHIS(MAXWELLS)=", FB8¢3 /7 X16¢ "HA(A
MP=TURNS/M)="y FB8.3¢ X4» "HQ(AMP=TURNS/M)="y F8.3¢ Xi4¢ PHN(AMP=TURNS/M)=
"¢ FBe3e Xts "LAMBDA="y FB8.5 / X16¢ "FOPP(AMP-TURNS)="s FB8.30» X&o
"NUS"y F8.3¢ XU "RHOP (OHMS/TURN SQUARED)=", F8e30 Xy
"FO(AMP=TURNS)="y FB8e3 / X16+ "FB(AMP=TURNS)=", FB8e3¢ Xl4e “EPS(MILLIMIC
ROHENRYS/TURN SQUARED)=",F8.5/)}
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FORMAT FMT2 (X1r "CIRCUIT™» XB8¢ "R1(OHMS)=%» F8e3r Xb» "R2(OHMS) ="y 039

F8.30 X&o "RS(OHMS)=", FB¢3¢ X4o "RU(OHMS)="» FB8.3 / X16¢ "L (MILLIHENRY 040
=%, FBe5¢ Xite "NS1Z", I&e Xlo "NS2="e I&e X&o "NB1Z=%, I&s X4, "NB22"» oul
I4e X&o “EK(VOLT)I="» FB8e5 7/ X16¢ "I0(MICROAMP)I=%y FBe5¢ Xls 062
“RD(OHM) ="y FBe¢3s Xio "ICC(AMP)="s FBe3¢ Xle "VIVOLTS)IZ"» F8.3 /)1} 043
FORMAT FMT3 (X1e F5e3s 3 FB8e3¢ F9e30 2 F8.30 F9e3r F8.30 F9elhr F9,3r o4t
2 F9elr 2 15)3 04s
FORMAT FMT& (X3¢ "T"s X7» "IL"s X6¢ "IS"s» X6¢ "F1"s» XSe "PHI1"» X3¢ “PH 046
100OT1", X&o "F2", XS» "PHI2"» X3¢ "PHIDOT2%» X&4» "ID"» X7¢ “VO"» X&» ol ] o7
IDTEL™s X2¢ "PHIDTE2"» X3s "CTS®s X2¢ "CF™ /)3 048
COMMENT: DECLARATION OF PROCEDURES.? 049

PROCEDURE &, (F,At ,NV,¢.), APPENDIX A
PROCEDURE &(F,¢,d',$*), APPENDIX D-2

COMMENT: INITIALIZE CORE PARAMETERS.} 050
CORE ¢ "100SC1"} 051
HG & 42.73 052
LAMBDA « 0.640} 053
LI ¢ 5.,5909-3% : 054
LO ¢ 7.986-3% 055
PHIR ¢ 6.250-8} 056
PHIS ¢ 7.000-8¢ 057
HA ¢ 290.0 } 0ss
HN ¢ 38,0} 0s9
FOPP ¢ 0,353 060
FB « 3.00¢ 061
FO ¢ 0.805} 062
ROP ¢ 0.948} 063
NU ¢ 1.207¢ o064
Fi12 * HG x LI} 065
F23 « HQ x LO} 066
Vi ¢ (PHIS = PHIR) /7 ((LO = LI) x HA)} 067
V2 ¢ (PHIS + PHIR) X HQ@ /7 ((LO = LI) x HN)} 068
EPS ¢ VIXLN(LO/LI) 1} 069
COMMENT: INITIALIZE CIRCUIT PARAMETERS.} 070
TR ¢ 0.1300-61 071
R1 ¢« 107.363 072
R2 ¢ 199.55) 073
R3 ¢ 0.340¢ 074
R& ¢ 0.53} 07s
L ¢ 0,2020~3} 076
NS1 ¢ 11} 077
NS2 ¢ 12} 078
NB1 ¢ 16} 079
NB2 ¢ 20.03 080
EK « 0.0578: 081
10 ¢ 0.06150=-6} 082
RD ¢ 0.100¢ 083
NV ¢ 0.,0001 .3 osu
V ¢ 27.08 0as
COMMENT: ESTABLISH INITIAL CONOITIONS.? 086
T « 0} 0a?
IL & ISM2 ¢ ISML ¢ IS ¢ IDM2 ¢ IDML ¢ 1D ¢« O oas
FiMl ¢ FL » F2M1 ¢ F2 ¢ 0} 089
PHIDOTL1 ¢ PHIDOTMAL ¢ PHIDOTEL ¢ PHIDOT2 ¢ PHIDOTMA2 PHIDOTE2 ¢ 0} 090
VD « 03 091
PHI1 ¢ PHI2 * ~ PHIR} 092
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CAPIS ¢ V 7/ RL X R2 /7 (R2 + 0.6 X ROP x (NS1 » 2 ¢
TAUS ¢ 2,0 x PHIR x (NB1 = 2 + NB2 = 2) /7 (NB2 x 0.
(NS1 x NB2 + NS2 X NB1) = FOPP X (NB1l + NB2)))}

IC ¢« vV /7 R1s
CF « 03
WRITE (OWT CPAGEI)}
WRITE (OWT» FMT1, LIST1)
WRITE (OwWY» FMT2s LIST2)3
WRITE (OWT» FMT4):
WRITE (OWTe FMT3» LIST3)
LINES « 123
COUNT « 03
COMMENT: COMPUTE VARIABLES DURING SWITCHING TIME. }
SWITCHING:
BEGIN ILM2 « ILM1;
ILML « IL3
PHI1IM2 « PHI1M1}
PHI1IM] « PHIL13
PHI2M2 ¢ PHIZ2M1:
PHI2M]: < PHIZ2$
PHIDOT1iM1 ¢ PHIDOT1:
PHIDOT2M1 ¢ PHIDOT2:
ISM2 ¢ ISM1;
ISML « IS
IOM2 ¢ IDM1s
IDM1 ¢ 1D
ILDOTM1 « ILDOT:
FiMl « F13
F2Ml « F23
DELT ¢ IF T < TR THEN TAUS/1000 ELSE TAUS/S00 3
T ¢« T ¢« DELT}
COUNT ¢ COUNT + 1¢
CTS « 03
GUESS: IF T S TR THEN IL ¢ IC x (IF T < 0.0 THEN © ELSE IF T <
0.028-6 THEN 1.02019 X T * 2,66667 ELSE IF T < 0.060-6 THEN 4.0086
X T = 0405 ELSE IF T € 04138=6 THEN 0.252 = 0,001 X (0.009470 + (
TIN ¢ 13 -~ 108 X T) x (- 0,316910 + TIN x (1729261 + TIN x (=
0575947 + TIN X 0.,073769)))) ELSE 0.252) /7 0.252 ELSE IL ¢« ILM2 +
20 x DELTY x ILDOTM1S
PHI1 « PHIIM2 + 2.0 X DELT x PHIDOTiIM1:
PHI2 & PHI2MZ2 + 2,0 X DELT x PHIDOT2M13:
IS ¢ 2,0 x ISM1 « ISM2}:
ID « 2.0 x IDM) = IDM2:
LOOP:
FUMl <« FJ3
GJM]1 ¢ 6JS
CTS « CTS + 1%
F1 ¢« NS1 x IS + NB1 x ID;
F2 ¢« NS2 x 1S - NB2 x ID:
F1DOTV ¢ (F1 = F1M1) / DELT:
F200T « (F2 - F2M1) / DELT:
PHIDOTMAL ¢ PHIDOT (F1s PHI1» PHIDOTMAPR1e PHIDOTSTR1)}
PHIDOTEL ¢ PHIDOTE (F1DOT+DELT+NV+PHIDOTEPRL)
PHIDOT1 « PHIDOTMA] + PHIDOTE1:
PHIDOTPR1 ¢ PHIDOTMAPR1 + PHIDOTEPR1}
PHIDOTMA2 « PHIDOT (F2¢ PHI2» PHIDOTMAPR2¢ PHIDOYSTR2)}
PHIDOTE2 ¢ PHIDOTE (F2DOT+DELT¢NVePHIDOTEPR2) 3
PHIDOT2 ¢ PHIDOTMA2 + PHIDOTE2:
PHIDOTPR2 ¢ PHIDOTMAPR2 + PHIDOTEPR2:
IF T > TR THEN
BEGIN ILDOT ¢ (= IL X R1 = NS1 x PHIDOT1 = NS2 X PHIDOT2 = IS Xx R3

M

NS2 ¢ 2
6 X ROP x (CAPIS x

) /7 L3
IL « ILM1 + 0.5 x DELT x (ILDOTM1 + ILDOT)}
END3
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PHI1 ¢ PHIIML + 0.5 x DELT x (PHIDOT1M1 ¢ PHIDOT1) 3 . 187

PHI2 ¢ PHI2M1 + 0.5 X DELT x {PHIDOT2M1 + PHIDOT2) 3 158
vD ¢ IF NB2 x PHIDOT2 > NBL X PHIDOT1 THEN 159 -
ID x RD + EK % LN (ID/I10 + 1.0 ) ELSE NB2 x PHIDOT2 = NB1 x PHIDOT13 160
FJ « NB2 x PHIDOT2 -~ NB1 x PHIDOT1 - VD = ID x R4} 161
6J ¢ NS2 x PHIDOT2 + NS1 X PHIDOT1 + IS X R3 - R2 X (IL - IS)S 162
FPRID ¢ - (NB2 * 2 x PHIDOTPR2 + NB1 * 2 X PHIDOTPRY + RD + R4 + 163
EK /7 (ID + 10))3 164
GPRIS ¢ NS2 * 2 X PHIDOTPR2 + NS1 * 2 X PHIDOTPRL + R2 + R3} 165
FPRIS ¢ IF NB2 x PHIDOT2 > NBl1 x PHIDOT1 THEN NS2 x NB2 x PHIDOTPR2 166
- NS1 x NB1 X PHIDOTPR1 ELSE 0 167
GPRID ¢« = FPRIS} 168
D « FPRID x GPRIS - FPRIS x GPRID! 169
IF D # 0 THEN 170
BEGIN DELID ¢ (- FJ x GPRIS + 6J x FPRIS) / Di 171
DELIS ¢ (FJ x GPRID = G6J X FPRID) 7/ Di 172
END ELSE DELID ¢ DELIS ¢ 0} 173
ID « ID + DELID} 174
IS « 15 + DELISH 175
IF SIGN (FJ) 2 SIGN (FJUM1) THEN ID « ID - 0.5 x DELID} 176
IF ID $ 0 THEN ID « O 3 177
IF SIGN (GJ) # SIGN (GJUM1) THEN IS ¢ IS = 0.5 x DELIS? 178
IF (ABS (DELID) > 0.0001 x ABS (ID) OR ABS (DELIS) > 0.0001 x ABS ( 179
1S}) AND CTS < 20 THEN GO TO LOOPI 180
IF CTS = 20 THEN CF « CF + 1} 181
COMMENT: PRINT OUTPUT .3 . 182
IF COUNTY MOD 20 = 0 THEN 183
BEGIN IF LINES MOD S50 = 0 THEN 184
BEGIN WRITE (OWT CPAGE)S 185
WRITE (OWTe FMT4)} 186
END} 187
WRITE (OWT» FMT3, LIST3)3 188
LINES ¢« LINES + 13 189
CF « 0% 190
END3 191
IF PHIDOTMA2 = 0O AND PHIDOTMA1 = 0 AND PHI1 > ~0.9xPHIR THEN 192
GO TO EXIYT ELSE GO TO SWITCHING} 193
END3 194
EXIT: END. 19%
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APPENDIX H

COMPUTER PROGRAM FOR CORE-DIODE- TRANSISTOR BINARY COUNTER
USING THE RUNGE-KUTTA AND ADAMS METHODS OF SOLUTION

Language: ALGOL 60

lsl Fl: ¢1, ¢11 FZ; ¢2; éz; ld, V B

Program Description: Computes i, I

éel' and @ezversus t.
Identifiers:

(1) Analytical identifiers

Identifier Symbol : Identifier Symbol
CAPIS I, 1D i,
DELT At : IDM1 L i-1y
DELTMIN At I1DM2 La-2)
DELX IL i,
DELXM1 Ax _y, IS i
EK E, ISM1 iy
EPS € ISM2 U
FB F, 10 I,
FD1 F, L L
FD2 F, LAMBDA A

FO F, LI L,
FOPP Fy LO L,
F1 F, NB1 Ng,
F1M1 Fiioy) NB2 Ny,
F2 F, NS1 N,
F2M1 Fyor) NS2 N,
F12 F NU v
F23 F,, PHIDOTEL .,
HA H, PHIDOTE2 b,
HN H_ PHIDOTEPR1 dey
HQ H, » PHIDOTEPR2 Pr
ic I, PHIDOTMAL b
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Identifier Symbol

PHIDOTMA2 d .,
PHIDOTMAPR1 !
PHIDOTMAPR2 ¢!,
PHIDOTPR1 d;
PHIDOTPR2 b,
PHIDOTSTR1 P
PHIDOTSTR2 P
PHIDOT1 &,
PHIDOT2 by
PHIMAL b
PHIMA2 b a2
PHIR P,
PHIS ¢,
PHI1 ¢,
PHI2 b,
RD R

(2) Auxiliary identifiers

Identifier

CORE Core name.

COUNT Index number of At.

EL Lower limit of error in ADAMS PROCEDURE

EU Upper limit of error in ADAMS PROCEDURE

EXIT Label of location where computation terminates.

FCOUNT Index number of jth iteration in F PROCEDURE.

FMT1 Format for the list LISTI.

FMT2 Format for the list LIST2.

FMT3 Format for the list LIST3.

FMT4 Format for output-column heading.

H Array for h(=Ax =At) to be used in RK and
ADAMS PROCEDUREs.

1 Index for At to be used in RK and ADAMS
PROCEDUREs.

LINES Index number of printed line.

LIST1 List of core parameters.

LIST2 List of circulit parameters.
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Identifier Symbol
ROP P,
R1 R,
R2 R,
R3 R,
R4 R,
T t
TAUS T,
TIN T,
TR T,
TI1 T
TIi2 Tio
\ v
VD Vy
vl v,
V2 Vv,
XM1 X -9

Description




Identifier Description
= rron

LIST3 List of results (t, 1

¢2r éz, idr Vd' qD(:‘l’ ¢€2’ jmax’ At)'

NV Negligible value of ¢,.

SWITCHING Label of location where computation starts
each At

X Array for storing x = t.

Y Array for storing a dependent variable.

YPR Array for storing the time derivitive of a
dependent variable.

Program:

BINARY COUNTERs USING RUNGE-KUTTA AND ADAMS METHODS TO COMPUTE CURRENTS
AND VOLTAGES VS. TIME.

BEGIN

COMMENT: DECLARATION OF CORE PARAMETERS.3

ALPHA CORE}

REAL LI» LO¢ PHIR» PHISe HAv HQ@» HNo FoPPs FBs» FO¢ ROPe NUs LAMBDA»
F12¢ F23¢ V1ie V2s EPS;

COMMENT: DECLARATION OF CIRCUIT PARAMETERS.;

REAL R1e R2¢ R3y R4¢ Lo NS1, NS2¢ NB1r NB2+ EKe 10+ RD» TRe ICo Vo
CAPIS, TAUS:

COMMENT: DECLARATION OF VARIABLES.}

REAL T+ DELT» XM1+ DELXM1e, DELXe TI1r TI2¢ 1L, ISM2, ISM1e IS, IDM2,
IDM1. IDe VDs F1M1., F1le F2M1s F2+ FD1, FD2» PHIDOT1» PHIDOTMAL.,
PHIDOTEls» PHIDOT2¢ PHIDOTMA2: PHIDOTE2, PHIDOTPR1s PHIDOTMAPR1»
PHIDOTSTR1» PHIDOTEPR1s PHIDOTPR2. PHIDOTMAPR2y PHIDOTSTR2,
PHIDOTEPR2s PHIL1» PHIMAl, PHI2. PHIMA2:

COMMENT: MISCELLANEOUS DECLARATIONS.}

REAL EUr EL» DELTMINe TINs NV 3

INTEGER I» LINESs COUNT» FCOUNT}

REAL ARRAY He X [0 : 53¢ Yo YPRLO 2 50 0 : in

LABEL SWITCHINGe EXIT3

COMMENT: DECLARATION OF FILE.OUTPUT LISTS AND FORMATS.$

FILE OWT 4 (24 15)3

LIST LIST1 (COREs LI x 183+ LO X 1Q@3s PHIR x 1Q08¢ PHIS x 108, HAr HQe
HNes LAMBDAs FOPP¢ NUs ROP. FO» FBe EPSX1R9)}

LIST LIST2 (Rir R2s R3¢ R4s L x 193¢ NS1. NS2¢ NBle NB2» EKs 10 X 106
¢ RDe ICs V)3

LIST LIST3 (T x 186¢ ILe ISs Fle PHI1 x 188+ PHIDOT1» F2s PHI2 X 1R8¢
PHIDOT2¢ IDs VDs PHIDOTEl» PHIDOTE2, FCOUNT,DELTX1Q9) 3

FORMAT FMT1 (X1 "CORE™r A7¢ X&4r "LI(MM)=", F8e30 X&4o "LO(MM)=", F8.3
¢ X&o "PHIR(MAXWELLS)="» F8.3¢ Xl4o "PHIS(MAXWELLS)="y F8.3 / X16» "HA(A
MP=TURNS/M)="s F8.3s X4+ "HQ(AMP-TURNS/M)=", FBe3¢r X4o "HN(AMP=TURNS/M)=
"¢ FBe3¢ X4e "LAMBDAZ=", F8.5 /7 X16¢ "FOPP (AMP=TURNS) =", F8e3r Xb4o
"NU="+ FBe3¢ X#4e "RHOP(OHMS/TURN SQUARED)="», FBe39 XU4o
"FO(AMP=TURNS)="¢ F8¢3 /7 X16¢ "FB(AMP=TURNS)="y F8.3¢ X&4¢ “EPS(MILLIMIC
ROHENRYS/TURN SQUARED)="+FB8.5/) %

FORMAT FMT2 (X1s "CIRCUIT™s X8¢ "R1(OHMS)=", F8e3¢ X&os "R2(OHMS)=w,
FBe3r X4o "RI(OHMS)I=", FB.3¢ X+ "R4(OHMS)=", F8¢3 / X160 "L(MILLIHENRY
S%e FBeSe XUs "NS1=", I4s X4» "NS2=", I4» X4, "NB1="y» I4¢ X4, "NB2=%,
I4s X4o "EK(VOLT)IZ"» FB8e5 / X160 "IO(MICROAMP)="y FB8.5¢ Xbo
“RD(OHM)I="» FBe3s X4 "IC(AMP)="» F8.3r X&» "VIVOLTS)I="y F8.3 /)3
FORMAT FMT3 (X1s F5.3, 3 F8e¢3» F9.3s 2 FB8e3r F9¢3» FBe3r FOel4o F9.30

2 F9elr 1I3¢ F7e4)
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001
002
003
004
005
006
007
oos
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043




FORMAT FMT4 (X3¢ "T™» XTs "IL"» X6» "IS"s X6¢ "F1"» XS» "PHI1"s X3+ "PH
1IDOT1™, X&o "F2"¢ XS¢ "PHI2"s X3» “PHIDOT2%"» X&» "ID"™» XT70¢ “VD"+ X4» “PH

IDTEL1", X2+ "PHIDTE2"»" CTS DELT"/)}
COMMENT: DECLARATION OF PROCEDURES.}

PROCEDURE &, (F,At,NV,3.), APPENDIX A
PROCEDURE &(F,¢,¢' ,$*), APPENDIX D-2

PROCEDURE F (Xe Yo OX)1}
VALUE X3
REAL X}
ARRAY Y [0Je» DX COJ3
COMMENT: THIS PROCEDURE USES THE FOLLOWING GLOBAL IDENTIFIERS: TR, R1
e R2s Ls NS1le NS2: NB1. NB2¢ EKe 100 RDe IC» CAPIS» FCOUNTe Tr XM1.
DELXM1es DELXe NVs ISM2e ISM1» 1Se IDM2» IDM1, IDe VDs F1iM1o Filr
F2M1e F2¢ FD1» FD2¢ PHIDOT1» PHIDOTMAL,» PHIDOTE1l» PHIDOT2. PHIDOTMA2»
PHIDOTE2¢ PHIDOTPR1» PHIDOTMAPR1» PHIDOTSTR1» PHIDOTEPR1r» PHIDOTPR2,
PHIDOTMAPR2» PHIDOTSTR2¢ PHIDOTEPR2}
BEGIN REAL Us Vo UIS» UIDe VISs VIDs NUMS, NUMDe DEEIS: DEEID. DENOM?
LABEL ITERAT}
IF X ¢ XM1 THEN
BEGIN DELXM1 ¢ DELX}
DELX ¢ X = XM13
IF DELXM1 = 0 THEN DELXM1 ¢ DELX?}
ISM2 ¢ ISMi}

ISML ¢ ISi
IDM2 « IDM1}
I1DMY ¢ 1D3
FiMl « F1i
FaMi Fa2i

*

IS + ISML + (ISM1 = ISM2) x DELX / DELXM13

ID « IDM1 + (IDM1 = IDM2) x DELX / DELXM13
END?
FCOUNT « 01}
ITERAT ¢ FCOUNT ¢ FCOUNT + 13}
F1 « NS1 x IS + NB1 x 1D}
F2 ¢ NS2 x IS = NB2 x 1D}
FD1 ¢ (F1 - F1M1) / DELX}
FD2 ¢ (F2 - F2M1) / DELXi}
PHIDOTMAL + PHIDOT (F1,» Y C1J» PHIDOTMAPR1s PHIDOTSTR1)$
PHIDOTEL ¢ PHIDOTE (FD1» DELXe NVs PHIDOTEPRL) 3
DX C1) « PHIDOT1 ¢ PHIDOTMAL + PHIDOTEL?
PHIDOTPR1 ¢ PHIDOTMAPR1 + PHIDOTEPR1}
PHIDOTMA2 ¢ PHIDOY (F2y, Y L21¢ PHIDOTMAPR2s» PHIDOTSTR2)}
PHIDOTE2 ¢ PHIDOTE (FD2¢» DELXe NV PHIDOTEPR2)
DX [2] ¢ PHIDOT2 ¢« PHIDOTMA2 + PHIDOTE2!}
PHIDOTPR2 ¢ PHIDOTMAPR2 + PHIDOTEPR23
IF T S TR THEN DX €31 ¢ IC x (IF T < 0.00 THEN 0 ELSE IF T <
0.028=6 THEN 2.72819 X T * 1.66667 ELSE IF T < 0,068=6 THEN 4.006
ELSE 1,005 X (= 00316910 + (TIN ¢ 13.0 = 1.088 x T) x (3.458522 +
TIN x (= 1,727841 + TIN X 0.295076)))) /7 0,252 ELSE DX [3] ¢ - (
NS2 x PHIDOT2 + NSi X PHIDOT1 + Y £31 x R1) /7 L}
vD ¢ IF NB2 x PHIDOT2 > NB1l X PHIDOT1 THEN

ID x RD + EK x LN (ID/IO + 1.0 ) ELSE NB2 x PHIDOT2 = NB1 x PHIDOT1:

U ¢« NS1 X PHIDOT1 + NS2 x PHIDOT2 + IS x R3 = (Y [3] = IS) x R23
V ¢ NBl X PHIDOT1 - NB2 Xx PHIDOT2 + ID x R4 + VDI

UIS ¢ NS1 * 2 x PHIDOTPR1 + NS2 & 2 x PHIDOTPR2 + R2 + R34

VID ¢ NB1 * 2 x PHIDOTPR1 + NB2 # 2 x PHIDOTPR2 + RD + EK / (1D +
10) + R4}
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UID « VIS ¢« IF NB2 x PHIDOT2 > NB1 x PHIDOTI THEN F 052
NS1 x NB1 x PHIDOTPR1 = NS2 X NB2 x PHIDOTPR2 ELSE 0 F 053
DENOM « UIS x VID - UID x VIS} F 054
IF DENOM = 0 THEN DENOM ¢ 1Q10} F 0SS
NUMS ¢ Vv x UID - U x VID} F 056
NUMD ¢ U x VIS = V x UIS} F 057
IF SIGN (NUMS / DENOM) * SIGN (DEEIS) THEN DEEIS ¢ 0.5 x (NUMS / F 058
DENOM) ELSE DEEIS ¢« NUMS / DENOM; F 059
IF SIGN (NUMD / DENOM) % SIGN (DEEID) THEN DEEID ¢ 0.5 x (NUMD / F 060
DENOM) ELSE DEEID ¢ NUMD / DENOM} F 061
IS « IS + DEEISI F 062
ID « ID + DEEID: F 063
IF ID S 0 THEN ID ¢ 0 F o064
IF FCOUNT < 10 AND (ABS (DEEIS) > 0.0001 X ABS (IS) OR ABS (DEEID) F 065
> 00001 x ABS (ID)) THEN 60 TO ITERAT} F 066
XM1 « X3 F 067
END OF F3 F 068
PROCEDURE RKSTARTS (Kys NFs Xis He Yo YPRe F) RK 001
VALUE K¢ NFe H? RK 002
REAL X1e» H3 RK 003
INTEGER Ko NF3 RK 004
ARRAY Y» YPR [0Or 03 RK 005
PROCEDURE F3 RK 006
BEGIN INTEGER I, J? RK 007
ARRAY DXo TEMPY» Kile K2+ K30 Ko KS» K6 [0 ¢ K13 RK 008
FOR I « 0 STEP 1 UNTIL (NF - 1) DO RK 009
BEGIN RK 010
BEGIN REAL X? RK 011
X e HxXxJTI+ X138 RK 012
F (Xe YLIr =)o DX)? RK 013
FOR J « 1 STEP 1 UNTIL K DO RK 014
BEGIN K1 [J) ¢ DX [JU] x H3 RK 01s
TEMPY [J) ¢« K1 [J] 7/ 3.0 + Y LI+ U] RK 016
END? RK 017
F (H /7 3.0 ¢+ X0 TEMPY, DX)3} RK 018
FOR J ¢ 1 STEP 1 UNTIL K DO RK 019
BEGIN K2 [J) ¢ DX [J] X H3 RK 020
TEMPY [J] ¢ (K2 [J) X 6.0 + K1 [J] x 4.0) » 25.0 + Y [I, RK 021
Jl RK 022
END? RK 023

F ((H %X 2.0) 7/ S.0 + Xe TEMPY» DX} 3 RK 024
FOR J ¢ 1 STEP 1 UNTIL K DO RK 025
BEGIN K3 [JJ « DX [J] X H3 RK 026
TEMPY [J]) ¢ (K3 [J] X 15,0 = K2 CJ] x 12.0 + K1 LJ)) / RK 027
4.0 + Y ({1, J] RK 028
END3 RK 029
F (H + Xo TEMPY, DX)3 RK 030
FOR J ¢ 1 STEP 1 UNTIL K DO RK 031
BEGIN K4 [JY « DX [J] X M3 RK 032
TEMPY [J) ¢ (K4 [J] X B0 - K3 [J] X S0.0 + K2 [J] X 90.0 RK 033
+ K1 [J] x 640) 7 81,0 + YLI, JI RK 034
END3 RK 035
F ((H x 2.0) 7/ 3,0 ¢+ Xo TEMPY, DX)3 RK 036
FOR J ¢ 1 STEP 1 UNTIL K DO RK 037
BEGIN K5 LJ] ¢ DX [J] X H3 RK 038
TEMPY [J]) ¢ (K4 [J] X 8.0 ¢+ K3 [J] x 10.0 + K2 [J] x 36.0 RK 039
+ K1 0J] x 640) 7 75.0 ¢+ Y LI, J) RK 040
END} RK 041
F ((H X 4.0) / 5.0 + X¢ TEMPY, DX)3 RK 042
FOR J ¢« 1 STEP 1 UNTIL K DO RK 043
BEGIN K6 LUl « DX [J] x H} RK oun
YOI + 10 J) e (KL TJD X 23,0 + K3 [J] x 1250 = KS [J] x RK 045
81l.0 + K6 [J] X 125.0) / 192.0 + Y LI+ J] RK o046
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END? RK ou7

END XBLOCK} RK ous

XCI +11 ¢« X (1) + HI RK o049

F (Xx[1 + 13 YLI + 1y «Je YPR CI + 1» x1)} RK 050

T e X([I +1123 RK 051

PHIL ¢ Y LI + 1, 108 RK 052

PHI2 ¢ Y LI + 1, 20 RK 053

IL ¢« YLI + 3¢ 328 RK osu
PHIDOTL ¢ YPR [1 + 1 10} RK 055
PHIDOT2 ¢ YPR [1 + 10 20} RK 056

F1 ¢ NS1 x IS + NB1 x 10} RK 057

F2 ¢ NS2 x IS = NB2 X 103 RK 058

VD ¢ ID x RD + EK x LN (ID 7 10 + 1)} RK 059

WRITE (OWT» FMT3» LIST3) RK 060

LINES ¢ LINES + 13 RK 061

COUNT ¢ COUNT + 13 RK 062

END RK 063
END PROCEDURE RKSTARTS} RK o64
PROCEDURE ADAMS (Xs¢ Yo YPRIME: Ny EUe ELes EPSe H» HMIN) 3 ADAMS001
VALUE N ADAMS002
ARRAY Y CO» 0)e YPRIME Co, 0)e X LOJ» HLCOM ADAMSO003
REAL EUes EL» EPSe HMING ADAMSO04
INTEGER N} ADAMS00S
BEGIN INTEGER I» J» Qi ADAMS006
ALPHA B} . ADAMS007
REAL TEMPs KPe¢ KCr KKo YC» E} ADAMS008
REAL ARRAY U [0 : 33 P £0 : 41» C CO ¢ 410 KCO ¢ 53y YP [O ¢ 20) ADAMSO009

o FP LO : 2013 ADAMS010
LABEL AWAY} ADAMSO011
FOR I ¢ 2 STEP 1 UNTIL & DO HCI)e XC[I)=-XTILI~- 1) ADAMSO012

H (5] « H L&D ADAMSO013

IF B 2 0 THEN H [5] « 2 X H [53% ADAMSO1Y4

B ¢+ O3 ADAMSO015
FOR I ¢« 3 STEP 1 UNTIL S DO K C1)1 « HLI - 11/ H (@] ADAMSO016
AWAY: FOR I ¢ 1 STEP 1 UNTIL 3 DO ADAMSO017
BEGIN U [I] « O} ADAMSO18
FOR J* 5 = I STEP 1 UNTIL 4 DOUCIl ¢ K[J+ 11 Xx (1 + U C1)) ADAMS019

END3 ADAMS020
PL1) ¢ = (3 + 4 x (U 11+ U L2)) + 6 x UL1) X U £231) 7 (12 x U [ ADAMS021

3) x (UC3)-U (1] X (UC3l -u L2 ADAMS022
PL[2) ¢ = (3 + 4 x (U 11+ UC31) + 6 x UL1] X UC31) /7 (12 x U [ ADAMS023

21 x (ur21-uU 1) x UKzl -uit3ny ADAMSO024
PI[3) ¢~ (3 + 4 x (ULC2] + UEKsh + 6 xUC21 x UV £31) 7 (12 x U L ADAMS025

13 x (UuC1l - v €21 x (UC1l - U L3} ADAMS026
PL4l ¢l - (PCLI +P €21 + P £33 ADAMSO027
Cr1l e (1 +2xU0UCL1D) / (12 x U C2) x (U [2]1 ¢+ 1) x (U C£2) - U L ADAMS028
1) ADAMS029
Cr2] ¢ (1 +2xUt2))/ (12 x U C1) x (U C1) + 1) x (U C1) - U T ADAMS030
21 ADAMSO031
Cr4) ¢« (3 +4 x (UL1DI + U £21) + 6 x VL1 x U t22) 7 (12 x (U T ADAMSO032

11 + 1) x (UT2) + 1)) ADAMS033
C(3) ¢l -1(Ccl1)+C £2)1 + C L4 ADAMSO34

KP ¢ 0,2 = (P [3] x (U C1) = 4) + P C2) x (U £21 = 4) + P [1] x (U ADAMSO035
£3]) * 4))3 ADAMSO036

KC ¢ 0.2 = (C [4] + C (21 x UC1) = 4 ¢+ CC1) x (U C21 « 4))3 ADAMSO037

KK ¢ KC /7 (KP = KC)i ADAMSO038
FOR J ¢ 1 STEP 1 UNTIL N Do ADAMSO03%9

BEGIN YP €J3 ¢ Y L4s JI + H €51 x (P C4 x YPRIME C4» J] ¢ P C3) x ADAMSO4O
YPRIME C3¢ J1 + P [2] x YPRIME [20 J1 + P [11 x YPRIME L1» J1)%  ADAMSO41
Y [S5¢ J3 ¢ YP LJ] ADAMSO42
END? ADAMSO043
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Q@ « 03
FOR J ¢« 1 STEP 1 UNTIL N DO
BEGIN I « 59
X C£S) « X [4] + HIS)
IF U= 1 THEN F (X [53r Y L[5 %3¢ FP)}

YC ¢« Y [&4r U + HIS5) X (CL4) x FP [J) + C €3] x YPRIME T4 J3
+ C (2] x YPRIME (3¢ JJ + C [11 x YPRIME (2, J1)3

YPRIME [Se» JJ ¢ FP [Jd}

E ¢ KK x (YC = YP [UN)}

Y [Se J] ¢ YC ¢+ EI}

TEMP ¢« ABS (YC)3

IF TEMP < EPS THEN TEMP ¢ EPS}

IF ABS (E) > EU x TEMP AND H [S5] 2 HMIN x 2.0 THEN

BEGIN H [5] ¢ 0,5 x H [5)s
K [5]) ¢ 2 xKI5)
60 TO AWAY
END;
TEMP « ABS (YC);
IF TEMP < EPS THEN TEMP ¢ EPS;
IF ABS (E) < EL x TEMP THEN @ « @ + 1
END3
IF @ = N THEN B ¢ 13
END ADAMS;

STREAM PROCEDURE TRANSFER (Ne Ar B);
VALUE Ni
BEGIN SI « Aj
DI « B;
DS « N wDS:
END TRANSFER}#

COMMENT: INITIALIZE CORE PARAMETERS. }
CORE ¢ "100SCi";

HQ ¢ 42.7;

LAMBDA ¢ 0.6403

LI « 5,59Q=-33

LO ¢ 7.,988-33

PHIR ¢ 6.250-8}

PHIS ¢ 7.000-83

HA ¢ 290,.0 3

HN ¢ 38,03

FOPP ¢ 0.35;

FB « 3.003

FO « 0.8053

ROP ¢ 0.948;

NU ¢ 1.2073

Fl2 ¢« HQ x LI}

F23 ¢« H@ x LO:

V1l ¢ (PHIS = PHIR) /7 ((LO = LI) x HA) §
V2 ¢ (PHIS + PHIR) X HQ 7/ ((LO =~ LI) x HN) @
EPS ¢ VIXLN(LO/LI) 3

COMMENT: INITIALIZE CIRCUIT PARAMETERS .}
TR ¢ 0.,1300-6;

Rl « 107.363

R2 ¢ 199,553

R3 ¢ 0.3403

R4 ¢« 0,533

L ¢ 0.2020-33

NS1 ¢ 113

NS2 ¢ 123

NB1 « 163

NB2 ¢ 20.0}

EK ¢« 0.,0578;

I0 ¢« 0.06158=63
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RD ¢ 0.1003
V e 27,0 3
NV ¢ 0.,0001 ¢
COMMENT: ESTABLISH INITIAL CONDITIONS.$
T ¢ 03
IL ¢ ISM2 ¢ ISM1 ¢ IS ¢ IDM2 ¢ IDM1 ¢ 1D « O3
FIM]l ¢ F1 ¢ F2M1 ¢ F2 « 03
PHIDOTL ¢ PHIDOTMAL ¢ PHIDOTE1 ¢ PHIDOT2 ¢ PHIDOTMA2 ¢ PHIDOTE2 ¢ 03
VD ¢ 0@
PHI1 ¢ PHI2 ¢ = PHIR}
CAPIS ¢ V / Rl X R2 / (R2 + 0.6 X ROP X (NS1 ® 2 + NS2 = 2))3
TAUS ¢ 2.0 X PHIR X (NBl = 2 + NB2 * 2) /7 (NB2 X 0.6 X ROP x (CAPIS x
(NS1 x NB2 + NS2 x NB1) = FOPP X (NB1 + NB2)))3
IC ¢ V / R1li}
WRITE (OWT [PAGEN)S
WRITE (OWTe FMT1l, LIST1)}
WRITE (OWTe. FMT2, LIST2)}
WRITE (OWT» FMT4)}
WRITE (OWT» FMT3s LIST3))
LINES « 12}
COUNT ¢ 03
X (0] « O3
DELT « TAUS / 5003
DELTMIN ¢ DELT / 103
EU « 0.0013
EL ¢ 0.0001}
Y (Or 13 « YLOr 23 ¢ = PHIR?
Y COr 3] « O}
XM1 ¢ - DELT}
RKSTARTS (3+» 4¢ 0.0¢ DELTe Yo YPRe F)i
SWITCHING: COUNT « COUNT + 13
IF T S TR THEN ADAMS (X¢ Yo YPRe 3¢ EU» ELs O¢1 X PHIRe He DELTMIN)
ELSE ADAMS (Xe Y¢ YPRe 3¢ 5.0 x EU» 10,0 x ELy 0.1 x PHIRs He DELTMIN
)3
DELT ¢« H (S
Te XIS
PHI1 ¢ Y (S5, 1123
PHI2 ¢ Y (50 223
IL ¢« Y (S» 30
PHIDOTL ¢ YPR (S 11}
PHIDOT2 ¢ YPR [S5» 213
COMMENT: PRINT OUTPUT.}
1F COUNT MOD 20 = 0 THEN
BEGIN IF LINES MOD 50 = 0 THEN

BEGIN WRITE (OWT CPAGEI)}

WRITE (OWTe FMT4) 3

END?

WRITE (OWT, FMT3e LIST3)i

LINES « LINES + 13
END}
TRANSFER (4r X [23r X C11)3
FOR I ¢ 2 STEP 1 UNTIL 5 DO
BEGIN TRANSFER (3o Y CIr 120 Y LI = 1, 1)
ENDTRANSFER (30 YPR CIv 130 YPR LI = 1, 1D}

}
IF PHIDOTMA2 = 0 AND PHIDOTMA1 = 0 AND PHI1 > =0.,9%XPHIR THEN
GO TO EXIT ELSE 6O TO SWITCHING?
EXIT: END.
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APPENDIX 1

COMPUTER PROGRAM FOR FLUX DIVISION
IN A LOADED SATURABLE CORE

Language: ALGOL 60

Program Description: Computes three types of output:

Identifiers:

() 9, ¢,. F_, ¢;, ¢,, F,, @4, b4, F,, and Ni
versus t.

(2) D vs. NI and Nf/RL for given 1,/1,.

(3) D vs. l4/l3 and Nf/RL for given NI.

(1) Analytical identifiers

Identifier

AM

A3

A4

BR

BS

CIM

CI3

CI4

b

DF4
DELF4
DELPHIM
DELPHI3
DELPHI 4
DELT
DELTAPHI3
DELTAPHI4
FBM

FB3

Symbol Identifier Symbol
A, FB4 Fpe
A, FIM F..
A, FI3 F .,
B, FI4 F.,
B, FJ f
C.. FJPR !
C,; M F,
C.4 FOIM Fo.,.
D FOI3 Fo.s
SFL () FOT4 Foie
F, F4(_1) FOM Fo,
¢n_¢l('l) Fo3 F o3
P3P 5o F0 4 Fo,
¢>4— Pac-1) FOPPM F%m
At FOPP 3 Fi.
Ip, FOPP4 Fo,
A, F12M Fiy,
F,. F123 Fias
Fgs F124 Fiqy
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Identi fier Symbol

F23M Foy.
F233 Fyas
F234 F oy
F3 F,
F4 F,
FaM1 Foio1
H h
HA H,
HB Hy
HN H,
HQ H,
HO H,
HOPP HY
HOI H,
KAPPA K
KAPPAT ),
LAMBDAIM Nin
LAMBDAIL3 s
LAMBDAT 4 N
LAMBDAM A
LAMBDA3 A,
LAMBDA4 N,
LIM L,
LI3 L.,
LI4 L.,
LOM I,
LO3 L.,
LO4 L.,
LM L,
L3 L,
L4 L,
MI M,
NI NI

Identifier Symbol
PHIDM Dan
PHID3 a3
PHID4 a4
PHIDOTIPRM P
PHIDOTIPR3 P!y
PHIDOTIPR4 B,
PHIDOT™ P,
PHIDOTMAPRM Pran
PHIDOTMAPR3 Pl o3
PHIDOTMAPR4 P! us
PHIDOTMM1 Pu(-1)
PHIDOT3M1 P3(-1)
PHIDOT4M1 Pa(-1)
PHIDOTPRM P!
PHIDOTPR3 ¢y
PHIDOTPR4 ',
PHIDOT3 by
PHIDOT4 &,
PHIM ¢,
PHIMM1 ®oi-1)
PHIRM Drn
PHIR3 .3
PHIR4 ¢ 4
PHISM ¢,
PHIS3 b,
PHIS4 b.,
PHI3 b,
PHI3M1 P3i-1)
PHI4 b,
PHI4M1 Pyi1)
ROPM Py
ROP3 P,s
ROP4 Poa

S L/ 1,
T t
TAUS T,
TIM T




Identifier

TR

TI3
TI4
VIM
V13
V14
V2M

Symbol

Identifier Symbol
V23 Vs
V24 Vo
ZETAP QP
WM v,
w3 w,y
w4 w,

(2) Auxiliary identifiers

Identifier

ANS2
ANS3
CF

CFS
COUNT
CT
FMT1
FMT2
FMT3
GUESS

INI
ILOAD
IS

J
LEGPARF
LEGPARL
LINES
LOOP

MATPARF
MATPARL

Description

Array for storing D vs. NI for given Nf/RL
and l4/l3.

Array for storing D vs. 14/13 for given Nf/RL
and NI.

Number of convergence failures for switching
time.

Cumulative number of convergence failures.
Index number of At.

Index of jth iteration.

Format for the list OUTL.

Format for the list OUT2.

Format for the list OUT3.

Label for location where predictions are made.

Index number (general).

Index for NI loop.

Index for Ni/RL loop.

Index for [,/1, loop.

Index number (general).
Format for the list LEGPARL
List of leg parameters

Index number of printed line.
Label of location where iterative computation
begins.

Format for the list MATPARL.

List of material parameters.
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Identifier Description
taentt - puididbeihalind bt

OuT! List of type-1 results.
SW Number of output type (1, 2, or 3).
SWITCHING Label of location where computation starts

for each Ot.

(3) DEFINE and PROCEDURE identifiers

ngﬂiiiiff Symbol Identifier Symbol
PHDOTI @i PHIDOTI 4 ¢i4
PHDOTMA ®.. PHIDOTMAM d ..
PHIDOTIM b, PHIDOTMA3 d s
PHIDOTI 3 éis PHIDOTMA4 ému4
Program:
FLUX DIVISION. 001
Sw=1: FLUX SWITCHING IN EACH LEG VS. TIME FOR GIVEN LOAD. L&4/L3y 002
AND DRIVE: 003
sw=2: D VS. DRIVE AND LOAD FOR GIVEN L&4/L33 004
SW=3: D VS. L4/L3 AND LOAD FOR GIVEN DRIVE. 00%
BEGIN COMMENT: DECLARATION OF MATERIAL PARAMETERS. $ 006
REAL BRy BSe HA» HQr» HN¢ HOPP» NUe KAPPA» HO¢» HBe ZETAPe KAPPAI, 007
NUIe MI» HOI? 008
COMMENT: DECLARATION OF LEG DIMENSIONS.# 009
REAL WMe AM» LIM» LOMe LMy W3e A3 LI3e LO3¢ L30» W4 Ay LIGe LOG» 010
L4%s He SI 011
COMMENT: DECLARATION OF SWITCHING PARAMETERS«} 012
REAL PHIRMes PHISMe FOPPMy FBMe FoMe ROPMy» LAMBDAMe F12M» F23Mr VIM 013
» V2Ms LAMBDAIM» CIM¢ FOIMs FIM» PHIR3s PHIS3e» FOPP3» FB3» FO3» 014
ROP3¢ LAMBDA3s» F123¢ F233¢ V13 V23, LAMBDAI3, CI3» FOI3» FI3» 015
PHIR4s» PHISUs» FOPP4» FBUe FOUs ROPGs» LAMBDAUe F124s F234s Vids vau 016
» LAMBOAI4s CI4es FOI4s FIU} 017
COMMENT: DECLARATION OF CIRCUIT PARAMETERS.} 018
REAL NNRe TRy NIe¢ NIVe TAUSS 019
COMMENT: DECLARATION OF VARIABLES.} 020
REAL Ts DELTe FJr FJPRe D¢ TIM» FMs, PHIDOTM» PHIDOTMM1. PHIDOTPRM, 021
PHIDOTMAPRM: PHIDOTIPRM» PHIM» PHIMM1» DELPHIMs PHIDM» TI13» F3» 022
PHIDOT3+» PHIDOT3M1l, PHIDOTPR3 PHIDOTMAPR3s PHIDOTIPR3» PHI3r 023
PHI3M1, DELPHI3s PHID3» DELTAPHI3» TI4e Fiy PHIDOT4s» PHIDOTUM1. o2u
PHIDOTPRGs PHIDOTMAPR4s PHIDOTIPRY PHI4e PHI4UM1, DELPHIG» PHID&» 025
DELTAPHI4» FuMi» DELFU4» DF43 026
COMMENT: DECLARATION OF MISCELLANEOQUS.} 027
INTEGER CFSe CFo CTe COUNTe INI» ILOADs ISe LINES» SWe I» Jo Ki 028
LABEL SWITCHING: LOOP» GUESS}? 029
REAL ARRAY ANS2L0 ¢ 201]¢ ANS3CO & 20¢ O ¢ 2013 030
COMMENT: DECLARATION OF OUTPUT LISTS AND FORMATS} 031
FILE F1 4(2, 15)3 032
LIST MATPARL(BRs BSr HAs HQ» HNe HOPPr» NUs KAPPAe» HO» HB» 2ETAPy 033
KAPPAI,» NUI» MI X 1Q6¢ HOI) ¢ o3u
LIST LEGPARL(LIM X 1R3s» LOM X 183¢ PHIRM X 108¢ PHISM X 108 03%
LAMBDAM: FOPPMs ROPM» FOM» FBMs F12M» LAMBDAIMs CIM X 1Q6¢ FOIM, 036
L13 X 103¢ LO3 x 1@3» PHIR3 X 108, PHIS3 x 108¢ LAMBDA3» FOPP3 037
ROP3» F03e¢ FB3s F123¢ LAMBDAI3s CI3 x 1R6¢ FOI3» L1I4 X 103, LO4 X 038
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183, PHIR4G x 1Q8¢ PHIS4 X 1Q08¢ LAMBDA4s FOPP4s ROP4e» FO4s» FBU4» 039

Fl24s LAMBDAI4, CI4 X 1860 FOI4)} 040
LIST OUT1(T x 106+ PHIDOTMs PHIM X 1Q8s FMs PHIDOT3» PHI3 x 108 041
F3+ PHIDOT4s PHI4 x 108+ F4e NIVe CT)e OUT2(NNRs FOR J ¢ 1 STEP 1 042
UNTIL 8 DO ANS2(Jl» CFS)e OUT3(FOR I ¢ 1 STEP 1 UNTIL 6 DO FOR J ¢ 043
0 STEP 1 UNTIL 9 DO ANS3{I, J1)3 044
FORMAT MATPARF(X40¢ "M A TE R I A L PARAMETERS"/ 04s
"BR="s F6e30 X2+ "BS="» F6e3¢ X2¢ “HAZ"» FS.ls X2¢ "HO=", Faele X2 046
o "HN="y Flhole X2¢ "HOPP="s FlUele X2¢ "NU="s FGels X2¢ "KAPPA=", 047
FTele X2¢ "HOZ="» Flhels X2¢ "HB="» FS.1s X2¢ "ZETAP=", F8.1 / 048
"KAPPAI="y F6ole X2¢ "NUIS"» F4o2s X2¢ "MI="y FS,2¢ "P=6"r X290 049
"HOI="» FU.1 /) 050
FORMAT LEGPARF(X40¢ "L E 6 PARAMETERS" /7 "LIM="y F6e3¢ 051
X2¢ "LOM="y F6.3¢ X2¢ "PHIRM="9 F6.3¢ X2¢ "PHISM="¢ F6e3¢ X2o 052
"LAMBDAM="¢ FS,3¢ X2¢ "FOPPM="» FS.3¢ X2¢ "ROPM="¢ F5.3s» X2¢ 053
"FOM=", FS5.3¢ X2¢ "FBM="» FSe3 /7 "F12M="¢ FSe¢3¢ X2, "LAMBDAIM=", 0S4
FSe3¢ X20 "CIM="y FS5e¢3¢ X2¢ "FOIMS") FS¢3 /7 "LI3="y F6e3¢ X2¢ 0sS
"LO3="y F6+3¢ X2¢ "PHIR3="y F6e30 X2¢ "PHIS3="y F6.30 X2¢ 056
"LAMBDA3=",» F5.3¢ X2+ "FOPP3="s FS.3¢ X2¢ "ROP3="s F5.3, X2 057
"FO3="s» FSe3¢ X2¢ "FB3="» FS5¢3 / "F123="» FSe3s X2, "LAMBODAI3=". 0S8
FSe3e X2¢ "CI3="y F5.3¢ X2¢ "FOI3="y F5.3 / "LIG="y F6¢3r X2¢ 059
"LO4="¢ F6e3¢r X2¢ "PHIRUZ"y F6e30 X2¢ "PHISUZ="¢ F6e30 X2» 060
"LAMBDAG="s F5.3¢ X2¢ "FOPP4="» FS.3¢ X2¢ "ROP4="y FS5.3r» X2» 061
"FOU="s FSe3r X20¢ "FBU="r FS5¢3 /7 "F124="¢ FSe3¢ X2 "LAMBDAI4=", 062
FSe3r X2¢ "CI4="¢ F5¢3¢1 X2+ "FOI4=", FS.3 /)} - 063
FORMAT FMT1(11 F10.4s I6)e FMT2(9 Fil.4» 16)s FMT3(9 Fllelio I6)e 064
TOP(X7» "T™¢ X5¢ "PHIDOTM™, X&s "PHIM™, X8+ "FM"™» XS¢ "PHIDOT3", 065
XGo "PHI3"e X8¢ "F3"¢ XS¢ "PHIDOTU"™) X4+ "PHI4™s X8e "Fu%, X7» 066
"NIV”» X6 "CT")¢ HEAD1(X20» 067
"FLUX SWITCHING IN EACH LE6G FOR NL*2/RL ="» F6¢31s XS5¢ "S =", Fie2¢ 068
XSe "NI =%¢ Fl4e2 /7 /7 /7 XTo "T"¢ XSe¢ "PHIDOTM™, X4» "PHIM™, X8¢ 069
"FM"s XSe¢ "PHIDOT3"» XGo» "PHI3"y X8 "F3"r XS5» "PHIDOT4", XU4o 070
"PHI&™y X80 "F4 e XT7¢ "NIV™s X6¢ "CT")e» HEAD2(X3S5¢ 071
"D VSe NI AND LOAD FOR S ="y Fl4e2 / / / Xlbs "NL®2/RL™» X40o» "NI™» 072
XS0e "CFS™ / / X10y» 8 F1141)+s HEAD3(X35, 073
"D VSe S AND LOAD FOR NI ="y FU4e0 7/ 7 /7 Xto "NL®2/RL"™» X40s ™S%, 074
XS0e "CFS™ /7 / X10,» 8 Fi11.1)} 07%
COMMENT: DECLARATION OF DEFINITIONS AND PROCEDURES.?$ 076

OEFINE PHOOTI =

Lines PHDOTIO?7 through PHDOTI21
of
PROCEDURE éi(F,t,Ti,éi), APPENDIX B

a1
OEFINE PHDOTMA=

Lines PHDTMAO6 through PHDTMA47
of
PROCEDURE ¢, (F,¢,¢,,$' ), APPENDIX C

171




REAL PROCEDURE PHIDOTIM}

BEGIN DEFINE F = FM #» T1 = TIM #» PHIDOTIPRIME = PHIDOTIPRM #,
PHIDOTI = PHIDOTIM #. LAMBDAI = LAMBDAIM #y CI = CIM #e F1 =
FIM #3

- PHDOTI
END PHIDOTIMI

REAL PROCEDURE PHIDOTMAMI

BEGIN DEFINE F = FM #e PHI = PHIM H PHID = PHIDM #e PHIDOTMAPRIME
= PHIDOTMAPRM #, PHIDOTMA = PHIDOTMAM H., LI = LIM #¢ LO = LOM #
» PHIR = PHIRM #» PHIS = PHISM Ho LAMBDA = LAMBDAM #¢ FOPP =
FOPPM #o ROP = ROPM #s FO = FOM #» FB = FBM #, F12 = F12M H»
F23 = F23M #e V1 = VIM #y V2 = V2M H} . -
PHDOTMA

END PHIDOTMAM;

REAL PROCEDURE PHIDOT13}

BEGIN DEFINE F = F3 #, TI = TI3 #» PHIDOTIPRIME = PHIDOTIPR3 #»
PHIDOTI = PHIDOTI3 #+» LAMBDAI = LAMBDAI3 #, CI = CI3 #s F1I =
FI3 #i :

PHDOTI
END PHIDOTI3:

REAL PROCEDURE PHIDOTMA3:

BEGIN DEFINE F = F3 #s PHI = PHI3 #» PHID = PHID3 #+» PHIDOTMAPRIME
= PHIDOTMAPR3 #, PHIDOTMA = PHIDOTMA3 #y LY = LI3 #o LO = LO3 #
» PHIR = PHIR3 #¢ PHIS = PHIS3 #» LAMBDA = LAMBDA3 #¢ FOPP =
FOPP3 #, ROP = ROP3 #» FO = FO3 #» FB = FB3 #s F12 = F123 #y
F23 = F233 #e V1 = V13 #e V2 = V23 8
PHDOTMA

END PHIDOTMA3:

REAL PROCEDURE PHIDOTI4}

BEGIN DEFINE F = Fu #» TI = TI4 #» PHIDOTIPRIME = PHIDOTIPR4 He
PHIDOTI = PHIDOTI4 #» LAMBDAI = LAMBDAI4 #» CI = CI4 #» FI =
FI4 #3}

PHDOTI
END PHIDOTIW}

REAL PROCEDURE PHIDOTMAK:

BEGIN DEFINE F = Fu #r PHI = PHI4 #» PHID = PHID4 #+ PHIDOTMAPRIME
= PHIDOTMAPR4 #, PHIDOTMA = PHIDOTMA4 #, LI = LI4 #y LO = LO4 ¥
+ PHIR = PHIR4 #» PHIS = PHIS4 He LAMBDA = LAMBDA4 #s FOPP =
FOPP4 #, ROP =" ROP4 #» FO = FO4 #e FB = FBy #y F12 = F124 Ho
F23 = F234 #» V1 = V14 He V2 = V2u4 8}
PHDOTMA

END PHIDOTMA4}

REAL PROCEDURE TANH (X1)}
VALUE X1
REAL X113
BEGIN REAL Yi
Y ¢« EXP (X1 + X1)1
TANH ¢ (Y = 1.0) /7 (Y + 1.0)
END TANHI

DEFINE MM = X 0.001 H}
COMMENT: TYPE OF OUTPUT.!}

SW ¢ 2j

COMMENT: MATERIAL PARAMETERS.}
BR ¢ 0,2300¢

BS ¢ 1.08 x BR}
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PHDOTIM1
PHDOT IM2
PHDOTIM3
PHDOTIMY
PHOOTIMS
PHDOTIM6

PHDTMAML
PHDTMAM2
PHDTMAM3
PHDTMAMY
PHDTMAMS
PHDTMAM6
PHDTMAM7
PHDTMAM8

PHDOTI31
PHDOT132
PHDOTI33
PHDOTI34
PHDOT135
PHDOT136

PHDTMA31
PHDTMA32
PHDTMA33
PHDTMA 34
PHDTMA3S
PHDTMA36
PHDTMA37
PHDTMA38

PHDOTI&)
PHDOTIN2
PHDOTI43
PHDOTI44
PHDOTI4S
PHDOT146

PHDTMA41
PHDTMA42 -
PHDTMA43
PHDTMALY
PHDTMA4S
PHDTMA46
PHDTMA4LY
PHDTMA4S

TANH0001
TANH0002
TANH0003
TANHOO004
TANH000S
TANH0006
TANH0007

077
078
079
080
081
082




HA « 310

HQ « 35.03

HN ¢ 30,.0¢

HOPP ¢ 40.0¢

N + 1,303

KAPPA ¢ 34003

HO « 61,03

HB «(HO X NU - HOPP) /(NU - 1)}

ZETAP ¢ KAPPA x NU xX(HB = HOPP) =(NU - 1)}

KAPPAI « 5923

NUT ¢ 1.33

Ml ¢ 10.78-63

HOI « 24,8}

COMMENT: CORE DIMENSIONS AND SWITCHING PARAMETERS.}

H e+ 1,31 MM )

WM ¢ 1,016 MM}

AM ¢ H x WM}

LIM ¢ 14,363 MM}

LOM ¢ 19,151 MM}

LM «(LIM + LOM) /7 23

PHIRM « AM X BR}

PHISM ¢ AM x BS}

FOPPM ¢ LM x HOPP3I

FBM ¢ LM x HB}

FOM ¢ LM x HO3

ROPM ¢ ZETAP x AM / LM}

LAMBDAM « KAPPA X AM /7 LM = NU3

F12M ¢« HQ x LIM}

F23M « HQ x LOMI

VIM «(PHISM =~ PHIRM) /(HA X(LOM = LIM))}

V2M ¢ (PHISM ¢+ PHIRM) x HQ /(HN x(LOM = LIM))}

LAMBDAIM ¢ KAPPAI x AM / LM *= NUI?

CIM ¢ MI x LM

FOIM ¢« HOI x LIM}

W3 ¢ 0,508 MM}

A3 ¢ H x W33

LI3 ¢ 4,310 MM}

LO3 +« 5,108 MM}

L3 «(LI3 + LO3) 7 23

PHIR3 ¢ A3 x BR}

PHIS3 ¢ A3 x BS3

FOPP3 ¢ L3 x HOPP}

FB3 ¢ L3 x HB}

FO3 ¢ L3 x HO}

ROP3 ¢ ZETAP X A3 / L3

LAMBDA3 ¢ KAPPA X A3 /7 L3 = NUs

F123 ¢« HQ x LI33

F233 ¢ H@ x LO33

V13 «(PHIS3 - PHIR3) /(HA x(LO3 - LI3))}

V23 ¢(PHIS3 + PHIR3) x HQ /(HN x(LO3 - LI3))}

LAMBDAI3 « KAPPAI x A3 /7 L3 = NUI}

CI3 « MI x L33

FOI3 ¢« HOI x LI3s

W4 ¢ 0,508 MM3

A4 « H x Wyt

PHIRG ¢ A4 x BRI}

PHISY « A4 x BSH

IF SW = 3 THEN

BEGIN WRITE(F1e MATPARFe MATPARL)}
WRITE(F1s HEAD3, 100.0¢ FOR S ¢ 1 STEP 2 UNTIL 9 DO S)3
LINES + 73

END3

IS « 03

FOR S « 1.83 DO
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083
084
085S
086
087
088
089
090
091
092
093
09&
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
1185
116
117
118
119
120
121
122
123

124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
160
161
142
1643
144
145
146



BEGIN IS ¢ IS + 13 - 147
LI4 « S x LI3} 148
LO4 ¢« S x LO33 149
L4 «(LIG + LOW) / 23 150
FOPPY ¢ L4 x HOPPI? 151
FBY4 ¢« Ly x HB} 152
FO4 « Ly x HOS 153
ROPY ¢ ZETAP x A4 / L4i 154
LAMBDAY ¢ KAPPA X A4 / L4 *= NUI 155
F124 ¢« HQ x LI4} 156
F234 ¢ HQ x LOW} 157
V14 ¢ (PHIS4 = PHIR4) /(HA x(LO4 = LI4)); 158
V24 «(PHIS4 + PHIR4) X HQ@ /(HN x(LO4 - LI4))} 159
LAMBDALI4 ¢ KAPPAI x A4 / L4 = NUI} 160
CIly « MI x L&3 161
FOI4 ¢ HOI x LIu4s 162
IF SW = 2 THEN 163
BEGIN WRITE(FLLPAGE]) 164

WRITE(F1» MATPARFe MATPARL)? 165
WRITE(F1» LEGPARFs LEGPARL)?} 166
WRITE(F1s HEAD2e Se FOR NI ¢ 1e10 130 1e5¢ 170 2:.00 3400 167
4e0¢ S.0 DO NI} 168
LINES ¢ 163 169
END3 170
COMMENT: CIRCUIT PARAMETERS.! 171
TR ¢ 0.080-6} 172
ILOAD ¢ 03 173
FOR NNR ¢ 0 1.0+ 3.962» 9.524 DO 174
BEGIN ILOAD ¢ ILOAD + 1i 17
CFS ¢ 03 176
INI « O3 177
FOR NI ¢ 1elr 1430 150 1e70 2600 3400 4400 5.0 DO 178
BEGIN INI ¢ INI + 13 179

IF SW = 1 THEN 180

BEGIN WRITE(F1LPAGED)} 181
WRITE(F1e MATPARFe MATPARL)?} 182
WRITE(F1s LEGPARFs LEGPARL)?} 183
WRITE(F1», HEAD1s NNRy» Se¢ NI)J 184

LINES < 163 185

END? 186
COMMENT: INITIAL CONDITIONS.} 187

T ¢« 0} 188

PHIM ¢ = PHIRM} 189

PHI3 ¢ = PHIR3} 190

PHI4 ¢ = PHIR4} 191

FM * F3 « F4 « 0} 192

CF ¢ COUNT « 03 193
PHIDOTM ¢ PHIDOT3 ¢ PHIDOTY + O} 194
COMMENT: COMPUTATION OF SWITCHING,$ 19%

TAUS ¢ 1.65 x PHIRM x ((1 / LAMBDAM =(1 / NU) + 1 / LAMBDA3 196

%(1 7/ NU)) /(NI = FOPPM = FOPP3)) = NUI 197

DELT ¢ TAUS / 200 198
SWITCHING: CT « 03 199

T ¢« T + DELTS 200

NIV ¢ NI x(IF T < TR THEN(1 = COS(3.141592654 x T / TR)) 201

/ 2 ELSE 1) 202
PHIMML ¢ PHIM} : 203
PHIDOTMM1 ¢ PHIDOTM: 204
PHI3ML ¢ PHI3} 208
PHIDOT3IM1 ¢ PHIDOT3!} 206
PHI4MYL ¢ PHI4} 207
PHIDOT4M1 « PHIDOT4} 208

FuM1l « Fu; 209
GUESS: PHIM ¢ PHIMM1 + DELPHIMS 210
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PHI3 ¢« PHI3M1 + DELPHI3} 211

PHI4 ¢« PHI4M] + DELPHIY3 ) 212

Fy « FyMl + DELF4} 213
LOOP: CT ¢« CT + 13 214

Fy « F4 + DFus 215
FI4 ¢ FOI4 X TANH(F4 /7 FOI4)3 216
PHIDOT4 ¢« PHIDOTMA4 + PHIDOTI4} 217
DELPHIG ¢ DELT X(PHIDOT4 + PHIDOT4ML1) / 2% 218
PHI4 « PHIuM) + DELPHI4S 219

F3 ¢« F4 + NNR x PHIDOT4} 220
F1I3 ¢« FOI3 X TANH(F3 /7 FO13)3 . 221
PHIDOT3 ¢« PHIDOTMA3 + PHIDOTI3} 222
DELPHI3 ¢ DELT x{PHIDOT3 + PHIDOT3M1) / 2% 223
PHI3 ¢« PHI3M1 + DELPHI3} 224
FM ¢ NIV - F33 225
FIM ¢« FOIM X TANH(FM /7 FOIM)} 226
PHIDOTM ¢ PHIDOTMAM + PHIDOTIM} 227
DELPHIM ¢ DELT x(PHIDOTM + PHIDOTMM1) / 23 228
PHIM « PHIMML ¢ DELPHIM} 229
DELF4 « Fy = FuMis 230
FJ ¢« PHIDOT4 + PHIDOT3 - PHIDOTM? 231
PHIDOTPRM ¢ PHIDOTIPRM + PHIDOTMAPRM} 232
PHIDOTPR3 ¢« PHIDOTIPR3 + PHIDOTMAPR3} 233
PHIDOTPRY « PHIDOTIPR4 + PHIDOTMAPRA4? 234
FJUPR «(PHIDOTPRM + PHIDOTPR3) x(1 + NNR x PHIDOTPR4) + 235
PHIDOTPRY4} ) 236

IF FUPR = 0 THEN FJUPR ¢ 10-203 237
DF4 ¢« IF SIGN(DF4) = SIGN(= FJ /7 FJPR) THEN =~ FJ /7 FJPR 238
ELSE = 045 %X FJ /7 FJPR? 239

IF ABS(FJ) > 0.0001 X PHIRM / TAUS AND CT < 20 THEN 60 TO 240
LOOP} 2461

IF CT = 20 THEN CF « CF + 13 242

IF COUNT MOD S = 0 AND SW = 1 THEN 243
BEGIN WRITE(F1s FMT1e OUT1)? 244
LINES ¢ LINES + 13 245

IF LINES MOD S0 = 0 THEN 246

BEGIN WRITE(FLILPAGE )} 247
WRITE(F1, TOP)3 248

END$ 249

END3 250
COUNT ¢ COUNT + 13 251

IF PHIM < 0 AND PHIDOTM > 00001 OR PHIM < = 0,99 x PHIRM 252
THEN 60 TO SWITCHINGS 253
DELTAPHI3 ¢« PH13 + PHIR3? 254
DELTAPHI&G ¢ PHI4 + PHIR4? 255

IF DELTAPHI4 = 0 THEN D ¢ 1020 ELSE D ¢ DELTAPHI3 / 2%6
DELTAPHI4} 257
CFS ¢ CFS + CF} 258

IF SW = 2 THEN ANS2CINI] « D3 259

IF SW = 3 THEN ANS3CILOAD. 1IS] ¢ D3 260
END NILOOP: 261
IF SWw = 2 THEN WRITE(F1, FMT2, OUT2)} 262
IF SWw = 3 THEN 263
BEGIN ANS3LILOADy 0] ¢ NNR: 264
ANS3CILOAD» 9] ¢ ANS3LILOADe» 91 ¢+ CFS 265
END} 266
END LOADLOOPS 267
END SLOOP? 268
IF SW = 3 THEN WRITE(F1, FMT3» OUT3)} 269
END. 270
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INDEX
Adams method of solving differential flux division, 72-89
equations, 67, 164-165 approximate 7 _, 76-77
basic equations, 74
computer program, 77-78, 167-175
D vs. 14 l; and load, 83, 85, 87
Binary counter, core-diode-transistor, 49-72 drive current, 77
analysis of Mode I, 56-61 effect of leg dimensions on switching
basic equations, 56-38 parameters, 7§
equivalent circuit, 57 exserimental verification, 81-88
simplifying assumptions, 56 vs. NI and load, 83-84, 86
Ci:zigiceggengzl solution of currents, 58-60 #(t) waveforms, 82-83, 86
1] ’ i -
computation of Mode I variables, 61-71 ) method.of computation, 74-75
comparing results of two methods, 68, 69, 70 initial &(t) of unloaded core, 22-34
limitations of, 68-69 comparison with experimental data, 26-34
Runge-Kutta and Adams method, 66-68 computer program, 24, 141-146
computer program, 67, 159-166 core and circuit parameters, 25
simple method, 61-66 drive current, 22-24
computer program, 6l1-64, 153-158 results, 26-34
results, 64-66 loaded core, 45-49
variations of ¢1(F1) and ¢3(Fé), 70, 71 computer program, 147-151

conditions for proper operation, 55 ;:igrd:;aﬁeg? 3, 46

drive currents, 52-64 inductive load, 47
operation, modes of, 49, 52-54 ) Newtgn'seme:;o&, 48

noninductive load, 47-48
¢;(k) and tp(k), 96
Chopper to measure F(t), 99 Computed: ) ]
Circuit data, experimental: core~diode~transistor binary counter,
’ . -

; . : de
core-diode-transistor binary counter, 64 minimum voltage, 70

flux divfsion, 81 time variables, 64-66
initial &(t), 25 ¢,(F)) and #y(Fy), 70, 71
CLEAR pulse: flux division:
amplitude, 99, 109, 119 D ws. 1/l and load, 83, 85, 87
duration, 109 D vs, NI and load, B83-84, 86
sequence, 99, 109, 119 .
L. ¢(t) waveforms, 82-83, 86
Coefficient, temperature--see e .

Temperature coefficient initial ¢(¢) of unloaded core:
Comparison between computed and experimental ?eak ¢ip vs. Fp and 7;, 40-41
fesultsi ?(t) components, 37

initial ¢(t), 26-34 #(t) waveforms, 26-34

loaded core, 49-51

y loaded d ; -
Components of ¢, 4 oaded core, ¢(t) and iy (t), 49-51

computed, 37 Computer program: )
experimental verification of, 18-21, 20-34 core-diode-transistor binary counter:
very low, 39, 41 simple method, 61-64, 153-158

Runge-Kutta and Adams method, 67, 159-166

ition of Core E-6 material, 20 e
Composition o re material, elastic ¢, %y 16,133

Computation of:

core-diode-transistor binary counter, flux division, 77-81, 167-175
data: Mode I, 61-71 inelastic decaying ¢, ® 17, 135
a: L e
ircuit, 64 initial ¢(t), 24, 141-146
core 1005C1, 64 loaded core, 1471151
R -Kutta and Adams method, 66-68 P - .
“2§;pu:er program, 67,159-166 main &, ¢ ., 17-18, 137-138
simple method, 61-66 Cooling for measuring temperature effects, 107

computer program, 61-64, 153-158
results, 64-66
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Core:
E-6:
composition, 20

initial #(¢) results, 26-34

initial $(t) test, 18-20
ramp-F(t) switching, 99
switching parameters, 25
I-4:
dimensions, 108
switching parameters,
J-1:
dimensions, 48
X switching parameters, 48
-1:
dimensions, 108
switching parameters,

108

108

dimensions, 82

switching parameters,
100SCl1:

dimensions, 64

switching parameters, 64

81-82

Core-diode-transistor binary counter--see Binary
counter, core-diode-transistor

Core holder, 20
Correction in ramp-F(t) switching parameters:
Fp, 101, 102, 105, 131
A, 101, 102, 104, 128, 131
Yy
Counter, binary--see Binary counter, core-diode-
transistor

Crossin§ of curves:
’

ktp(k 103, 106

%(k), 127, 128, 130

é (k), 124
14

Current drive--see Drive current
Current drivers in:

initial #(t) test, 21
ramp-F(t) switching, 99

Damping, viscous:
for wall motion, 119

of ¢€, 35

Differential equations, numerical solutions of,
comparing results of two methods, 68, 69, 70
Runge-Kutta and Adams methods, 66-68, 159-166
simple method, 46-48, 61-66

Dimensions of cores--see Cores, dimensions

Dimensions of leg,
see switching parameter effects of
geometry on

Domain nucleations, 119

Drive current:
binary counter, 52,
flux division, 713,
initial ¢(t), 22-24, 26-34

_ramp F(t) switching, 99,100

Driver in initial &(t) test, 21

64-66
1

INDEX

effects on switching parameters--
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Duration of CLEAR pulses, 109

Easy axes, statistical variation of, 119

Elastic ¢, 4-5
future investigation, 43

computed &E(t)’ 37

computer program, 16, 13
cqnclu51ons aboué moéel, 42-43
viscous damping, 35

Equipment in:

initial .(t) test, 21
ramp F(t) experiments, 99

Error in previous computation, 46

Error in static ¢(F), 110, 111

Experiment, flux division, 73

vs. NI and load, 83-84, 86
¢ (t) waveforms, 82-83, 86

Engrimental waveforms:
inary counter, 64-66

loaded core, %(t) and iL(t), 49-51
ramp-F(t), 99

%(t) for ramp-F(t), 100, 101

unloaded thin ring, #(t), 26-34, 36-37

Experiment: & | .
ramp-F(t) switching, 99, 123
static ¢(F) vs. temperature,

&;(F) vs. temperature, 118

107

&(?) of unloaded thin ring, 18-21, 26-34
Equipment, 20-21
results, 26-34

ringing of #(t), 19-20

Fall time for ramp-F(t) switching, 99
Flux change:

due to ¢, 39

due to ¢i' 39, 41

oby 41

Flux division, computation of, 72-89
analysis, 74-77
basic equations, 74
calculation of switching parameters,
drive current,
estimation of 7 _» 16-17

method of computation, 74-15
computer program, 77-81, 167-175

multiple output,

program outline, 78-81

¢ PROCEDUREs, 77-78
experiment, 73
experimental verification,
circuit data, 81
core
material parameters, 81
switching parameters, 82

75-176

81-88




INDEX

Flux division, computation of--continyed

D vs, 14/13and load, 83, 85, 87

results:

D vs. NI and load, 83-84, 86

) (1) waveforms, 82-83, 86
limitations of previous calculation, 72

Flux reference, 109

Flux switching:
components, 4, 37
in core diode-transistor binary counter:
partial, 53-55, 70-71
complete, 70-71
interrupted-i'experiment, 1-3
Flux switching models, 4-15

analogy between ¢i and ¢ , 36
elastic, 4-5 ma
inelastic, decaying, 6-11
inelastic, main, 1]-12

use of, in ramp-F switching, 91, 92, 98, 106, 119,
123, 124

Future investigation:
computer programs for magnetic circuits, 89
flux-switching models, 43
ramp-F(t) switching effects, 105, 128, 132

witching parameters, effects of
geometry on

Geometry egfgct on switching parameters--see

Grains in ferrite, 119

Graticule of oscilloscope, 99

Heating of transistors, 107
History effects, removal of, 119
Hyperbolic B(H), 111

Inductive load, computation of, 47
results, 49-51

Inelastic %: . .
approximate model for ¢i te¢ 14

computer program, 139-140
modified models for &, 7

computer program, 17, 135
modi fied model for ¢, 11-12

computer program, 17-18, 137-138
previous model, 11

Inelastic decaying é component, ¢ :
computed éi(t), 37
computed éip vs. Fb and 7}, 40-41

computer program, 17, 135
conclusions, 42-43
experimental observation, 1-3
future investigation, 43
geometry effect on switching parameters, 9-10
models, 6-11 .
analogy with model for % , 36
for ramp F, 7-9 ma
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modi f1ed model, 7
previous model, 6
physical interpretation, 6

Interrupted-ﬁ'experinents, 1-3

Iterative solution, Newton's method:
one variable, 48
two variables, 58-60

Linearity in ramp-F(t), 99

Loaded-core computation:
computer program, 147-151
core data, 48
effect of decreasing F(t) ou A and s, 4%
error in Report 3 results, 46 ¢
inductive load, 47
results, 49-51
load, 45
loop equation, 46
Newton’s method, 48
noninductive load, 47-18
results for inductive load, 49-51
transcendental solution, 48

Magnetization, saturation, 119
Main inelastic component, ®, .0 11-12

computed &La(t)’ 37

computer program, 17-18, 137-138
model, 11

analogy with é; model, 36
Material composition, core E-6, 20

Minimum voltage supply, core-diode-transistor
binary counter, 55

Models, flux switching--see Flux-switching models

Modes of operation, core-diode-transistor
binary counter, 49, 352-51
analysis of Mode I, 56-61
variation of ¢1(Fl) and ¢2(Fé), 70, 71

Multiple initial &(t) oscillograms, 36-37

Newton’s method of transcendental solution, 48
Negative Fgr. 127

Nonlinearity in ramp-F(t), 99
Nucleation of domains, 119
Numerical computation--see Computation

Numerical solution of differential equations:
Runge-Kutta and Adams methods, 66-68, 159-166
simple method, 46-48, 61-66

Operation, core-diode-transistor binary counter,

49, 52-54

Oscillograms of &(t): .
binary counter, core-diode-transistor, 64-66
flux-division experiment, 82-83, 86

initial é(t), multiple exposure, 36-37
initial &(t) test, 26-34



Oscillograms of ¢(t)--continued
interrupted-F experiment, 1-3
loaded core, 49-51
ramp-F(t) switching, 101

Oscilloscope:

initial é(t) experiment, 21
ramp-F(t) experiments, 99

Oven: .
in initial @(t) test, 21
to determine effects of temperature, 107

Parameters, switching--see Switching parameters

PARTIAL- SET pulse, 109, 114-118

Partially-set state, 107,117,119

Partial switching in core-diode-transistor binary
counter, 53-55

Peak ., computed vs. Fy and T, 40-41

Permeability, 110
Program, computer--see Computer program

Pulse, drive:
amplitude, 99, 109, 119, 123
duration, 109
sequence, 99, 119

Radius, core, 108, 111

Ramp mmf:
drive, 91, 99
effect on %i, 7-9

switching parameters, 102, 1035, 108, 129
Ratio:
& to ¢ , 102

Pcalce Pexp

¢ to ¢, 111
H to H , 111
q n

Reference, Voltage, 99
Regions in &;(F), 92, 97, 98, 103
Ringing ¢(t), 19-20

Rise time in measuring &;(F), 119
Rise time effect on:
A and C., 35
1A 1
¢ip' 7-9, 40-41

Runge-Kutta method of solving differential
equations, 67, 163-164

SET pulse, 99, 109,

Shift, vertical, in:

27(k), 125, 132
2/>p<k>. 101

Slope of:
ktp(k), log-log, 94, 123

ramp-F(t), 99
¢¥(k), log-log, 94

INDEX

Squareness ratio, 110
Statistical variation of easy axes, 119
Static ¢(F):

temperature, 107 .

effect of very low ¢ compoment on, 39, 41
Step-F(t):

drive, 98, 101, 102, 118, 123, 130

parameters, 102, 123, 128, 130
Supply voltage, core-diode-transistor binary

counter, 52, 53, 54

Switching, flux--see Flux switching
Switching parameters of:

Core E-6, 25, 35-36

Core 1-4, 108

Core J-1, 48

Core S, 81-82

Core 100SC1:

Core K-1, 108
in core-diode-transistor binary counter, 64

Switching parameters in model:

¢%a, 11

. effect of decreasing F(t), 49

¢i, 7, 9-11, 35-36

. effect on rise time, 35

., 45

Switching parameters, effects of geometry on:
¢i' 9-10, 76
76

4

ma’
E'
Switching parameters, variation of,

106, 125, 128, 131
Switching time, approximate, 62, 76-77

Table, core data:

11, 108

Temperature:
coefficients, 108, 130
control, 107
effects on:

static ¢(F), 107

fp(k),123
¢ (F), 118
qbp(k), 123

TEST pulse, 109, 117
Threshold field for ¢i, 10-11
Transcendental solution by Newton’s method:

one variable, 48
two variables, 58-60

Transistor:
drivers, 99
in a binary counter, 64

Ultrasonically cut, Core I-4, 107, 108
Uniformity in a core, 111
Uniformity of cores, 107




INDEX

Viscous damping effect on <;5€, 35

Voltage reference, 99

Waveform--see Experimental waveforms

Wing:
in Static @(F), 111, 117
sharpness in Static #(F), 114
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